48 research outputs found

    Computational illumination for high-speed in vitro Fourier ptychographic microscopy

    Full text link
    We demonstrate a new computational illumination technique that achieves large space-bandwidth-time product, for quantitative phase imaging of unstained live samples in vitro. Microscope lenses can have either large field of view (FOV) or high resolution, not both. Fourier ptychographic microscopy (FPM) is a new computational imaging technique that circumvents this limit by fusing information from multiple images taken with different illumination angles. The result is a gigapixel-scale image having both wide FOV and high resolution, i.e. large space-bandwidth product (SBP). FPM has enormous potential for revolutionizing microscopy and has already found application in digital pathology. However, it suffers from long acquisition times (on the order of minutes), limiting throughput. Faster capture times would not only improve imaging speed, but also allow studies of live samples, where motion artifacts degrade results. In contrast to fixed (e.g. pathology) slides, live samples are continuously evolving at various spatial and temporal scales. Here, we present a new source coding scheme, along with real-time hardware control, to achieve 0.8 NA resolution across a 4x FOV with sub-second capture times. We propose an improved algorithm and new initialization scheme, which allow robust phase reconstruction over long time-lapse experiments. We present the first FPM results for both growing and confluent in vitro cell cultures, capturing videos of subcellular dynamical phenomena in popular cell lines undergoing division and migration. Our method opens up FPM to applications with live samples, for observing rare events in both space and time

    Enhanced Crystallinity of Triple-Cation Perovskite Film via Doping NH\u3csub\u3e4\u3c/sub\u3eSCN

    Get PDF
    The trap-state density in perovskite films largely determines the photovoltaic performance of perovskite solar cells (PSCs). Increasing the crystal grain size in perovskite films is an effective method to reduce the trap-state density. Here, we have added NH4SCN into perovskite precursor solution to obtain perovskite films with an increased crystal grain size. The perovskite with increased crystal grain size shows a much lower trap-state density compared with reference perovskite films, resulting in an improved photovoltaic performance in PSCs. The champion photovoltaic device has achieved a power conversion efficiency of 19.36%. The proposed method may also impact other optoelectronic devices based on perovskite films

    Sliding-MOMP Based Channel Estimation Scheme for ISDB-T Systems

    Get PDF
    Compressive sensing based channel estimation has shown its advantage of accurate reconstruction for sparse signal with less pilots for OFDM systems. However, high computational cost requirement of CS method, due to linear programming, significantly restricts its implementation in practical applications. In this paper, we propose a reduced complexity channel estimation scheme of modified orthogonal matching pursuit with sliding windows for ISDB-T (Integrated Services Digital Broadcasting for Terrestrial) system. The proposed scheme can reduce the computational cost by limiting the searching region as well as making effective use of the last estimation result. In addition, adaptive tracking strategy with sliding sampling window can improve the robustness of CS based methods to guarantee its accuracy of channel matrix reconstruction, even for fast time-variant channels. The computer simulation demonstrates its impact on improving bit error rate and computational complexity for ISDB-T system

    Emerging roles of circular RNAs in cancer therapy-induced cardiotoxicity

    Get PDF
    Cancer therapy-induced cardiotoxicity (CTIC) is an important cause of death in cancer survivors which often results in the withdrawal or discontinuation of drugs. The underlying mechanisms of CTIC remain unclear. Circular RNAs (circRNAs) are a class of non-coding regulatory RNA molecules which have emerged in recent years. They are generated by back splicing and have powerful biological functions, including transcription and splicing, isolating or building macromolecular scaffolds to interfere with microRNA activity and signaling pathways, and acting as templates for translation. Moreover, circRNAs demonstrate high abundance and significant stability. CircRNAs can be used as novel biomarkers because they often function in a cell-type and tissue-specific manner. CircRNAs have attracted increasing attention in cardiovascular disease research, and recent studies exploring the role of circRNAs in CTIC have had promising results. This review will summarize the current understanding of circRNAs’ biogenesis, regulation and function. Their clinical potential as biomarkers, therapeutic agents and drug targets will also be explored

    Genome-wide analysis and identification of stress-responsive genes of the CCCH zinc finger family in Capsicum annuum L.

    Get PDF
    The CCCH zinc finger gene family encodes a class of proteins that can bind to both DNA and RNA, and an increasing number of studies have demonstrated that the CCCH gene family plays a key role in growth and development and responses to environmental stress. Here, we identified 57 CCCH genes in the pepper (Capsicum annuum L.) genome and explored the evolution and function of the CCCH gene family in C. annuum. Substantial variation was observed in the structure of these CCCH genes, and the number of exons ranged from one to fourteen. Analysis of gene duplication events revealed that segmental duplication was the main driver of gene expansion in the CCCH gene family in pepper. We found that the expression of CCCH genes was significantly up-regulated during the response to biotic and abiotic stress, especially cold and heat stress, indicating that CCCH genes play key roles in stress responses. Our results provide new information on CCCH genes in pepper and will aid future studies of the evolution, inheritance, and function of CCCH zinc finger genes in pepper

    Spin-orbit-coupled triangular-lattice spin liquid in rare-earth chalcogenides

    Full text link
    Spin-orbit coupling is an important ingredient in many spin liquid candidate materials, especially among the rare-earth magnets and Kitaev materials. We explore the rare-earth chalcogenides NaYbS2_2 where the Yb3+^{3+} ions form a perfect triangular lattice. Unlike its isostructural counterpart YbMgGaO4_4 and the kagom\'{e} lattice herbertsmithite, this material does not have any site disorders both in magnetic and non-magnetic sites. We carried out the thermodynamic and inelastic neutron scattering measurements. The magnetic dynamics could be observed with a broad gapless excitation band up to 1.0 meV at 50 mK and 0 T, no static long-range magnetic ordering is detected down to 50 mK. We discuss the possibility of Dirac spin liquid for NaYbS2_2. We identify the experimental signatures of field-induced transitions from the disordered spin liquid to an ordered antiferromagnet with an excitation gap at finite magnetic fields and discuss this result with our Monte Carlo calculation of the proposed spin model. Our findings could inspire further interests in the spin-orbit-coupled spin liquids and the magnetic ordering transition from them
    corecore