326 research outputs found

    Sleep deprivation-induced multi-organ injury: role of oxidative stress and inflammation

    Get PDF
    Sleep deprivation affects all aspects of health. Adverse health effects by sleep deviation are still underestimated and undervalued in clinical practice and, to a much greater extent in monitoring human health. We hypothesized that sleep deprivation-induced mild organ injuries; oxidative stress and inflammation might play a crucial role in inducing multi-organ injury. Male C57BL/6J mice (n = 6-7) were sleep-deprived for 0-72 h using a modified multiple platform boxes method. Blood and tissue were collected. Liver, heart, kidney, lung, and pancreatic injuries were evaluated using biochemical and histological analyses. Glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), total billirubin (TBIL), creatine phosphokinase (CPK), creatine phosphokinase-myocardial band (CKMB), lactic dehydrogenase (LDH), creatinine (CRE), and blood urea nitrogen (BUN) were assayed in blood. Malondialdehyde (MDA), nitric oxide (NO), tumor necrosis factor (TNF)-ɑ, interleukin (IL)-1β, and IL-6 levels were measured. Histology revealed mild-to-moderate liver and lung injury in sleep-deprived mice. Sleep-deprived mice had significantly higher GOT, GPT, TBIL, CPK, CKMB, LDH, BUN, and ɑ-amylase (AMYL) levels, which indicated liver, heart, kidney, and pancreatic injuries. Serum IL-1β at 24 h and IL-6 at 72 h were significantly higher in sleep-deprived than in control mice. Hepatic TNF-ɑ and IL-1β were significantly higher, but IL-6 significantly lower in mice that had been sleep-deprived for 72 h. Sleep deprivation-mediated inflammation may be associated with mild to moderate multi-organ damage in mice. The implication of this study indicates sleep deprivation in humans may induce multi-organ injury that negatively affects cardiovascular and gastrointestinal health

    An Unexpected Cause of a Subcutaneous Nodule: A Case Report of Dirofilaria Infection

    Get PDF
    Humans are not natural hosts of Dirofilaria; however, pulmonary or subcutaneous infections may occur through mosquitoes transmission. Patients presenting with simple subcutaneous nodules may not seek early medical attention, and hence systemic involvement through hematogenous spread may occur. Definitive diagnosis of Dirofilaria infection is made by histopathological examinations of the infected tissues. We report a patient with an incidental diagnosis of Dirofilaria infection confirmed by histopathological findings of a subcutaneous nodule on the right thigh. The source of infection remains unknown

    Suzuki Piano Method and Flow Experience among Adult Piano Beginners: A Quasi-Experimental Study

    Get PDF
    Although the Flow experience has been researched extensively in music education, there is limited investigation into exploring the link between the Suzuki piano method and Csikszentmihalyi’s flow theory. To address this gap, a quasi-experimental study was conducted to examine how the Suzuki piano method can promote the flow state of adult piano beginners. The study involved 36 participants assigned to either a treatment group or a control group. Both groups underwent an eight-week training program in Suzuki Piano Method and Conventional Group Piano Class respectively. After the program, participants from both groups underwent a post-training performance test and completed a survey, namely Learning and Performing Experience Scale (LPES), modified based on the Short Flow State Scale (S-FFS) by Martin and Jackson to examine their flow experience. The treatment group showed significantly higher flow experience levels than the control group, particularly in dimensions of Concentration, Unambiguous feedback, Timelessness, Loss of self-consciousness, Sense of control, Autotelic experience, and Challenge-skill balance. The findings suggested that the Suzuki piano method may promote flow experiences among adult beginners in piano learning. The implication of the study signified that the collaborative and interactive learning inherent in the method might be beneficial in achieving flow state and could be a consideration in conducting group piano classes

    Square Key Matrix Management Scheme in Wireless Sensor Networks

    Get PDF
    In this paper we propose a symmetric cryptographic approach named Square Key Matrix Management Scheme (SKMaS) in which a sensor node named Key Distribution Server (KDS) is responsible for the security of key management. When the system starts up, the KDS sends its individual key and two sets of keys to sensor nodes. With the IDs, any two valid sensor nodes, e.g. i and j, can individually identify the corresponding communication keys (CKs) to derive a dynamic shared key (DSK) for encrypting/decrypting messages transmitted between them. When i leaves the underlying network, the CKs and the individually keys currently utilized by i can be reused by a newly joining sensor, e.g. h. However, when h joins the network, if no such previously-used IDs are available, h will be given a new ID, CKs and the individually key by the KDS. The KDS encrypts the CKs, with which an existing node q can communicate with h, with individual key so that only q rather than h can correctly decrypt the CKs. The lemmas and security analyses provided in this paper prove that the proposed system can protect at least three common attacks

    Cdc14B depletion leads to centriole amplification, and its overexpression prevents unscheduled centriole duplication

    Get PDF
    Centrosome duplication is tightly controlled in coordination with DNA replication. The molecular mechanism of centrosome duplication remains unclear. Previous studies found that a fraction of human proline-directed phosphatase Cdc14B associates with centrosomes. However, Cdc14B's involvement in centrosome cycle control has never been explored. Here, we show that depletion of Cdc14B by RNA interference leads to centriole amplification in both HeLa and normal human fibroblast BJ and MRC-5 cells. Induction of Cdc14B expression through a regulatable promoter significantly attenuates centriole amplification in prolonged S phase–arrested cells and proteasome inhibitor Z-L3VS–treated cells. This inhibitory function requires centriole-associated Cdc14B catalytic activity. Together, these results suggest a potential function for Cdc14B phosphatase in maintaining the fidelity of centrosome duplication cycle

    Novel insights into the cardio-protective effects of FGF21 in lean and obese rat hearts

    Get PDF
    Aims: Fibroblast growth factor 21 (FGF21) is a hepatic metabolic regulator with pleotropic actions. Its plasma concentrations are increased in obesity and diabetes; states associated with an increased incidence of cardiovascular disease. We therefore investigated the direct effect of FGF21 on cardio-protection in obese and lean hearts in response to ischemia. Methods and Results: FGF21, FGF21-receptor 1 (FGFR1) and beta-Klotho (βKlotho) were expressed in rodent, human hearts and primary rat cardiomyocytes. Cardiac FGF21 was expressed and secreted (real time RT-PCR/western blot and ELISA) in an autocrine-paracrine manner, in response to obesity and hypoxia, involving FGFR1-βKlotho components. Cardiac-FGF21 expression and secretion were increased in response to global ischemia. In contrast βKlotho was reduced in obese hearts. In isolated adult rat cardiomyocytes, FGF21 activated PI3K/Akt (phosphatidylinositol 3-kinase/Akt), ERK1/2(extracellular signal-regulated kinase) and AMPK (AMP-activated protein kinase) pathways. In Langendorff perfused rat [adult male wild-type wistar] hearts, FGF21 administration induced significant cardio-protection and restoration of function following global ischemia. Inhibition of PI3K/Akt, AMPK, ERK1/2 and ROR-α (retinoic-acid receptor alpha) pathway led to significant decrease of FGF21 induced cardio-protection and restoration of cardiac function in response to global ischemia. More importantly, this cardio-protective response induced by FGF21 was reduced in obesity, although the cardiac expression profiles and circulating FGF21 levels were increased. Conclusion: In an ex vivo Langendorff system, we show that FGF21 induced cardiac protection and restoration of cardiac function involving autocrine-paracrine pathways, with reduced effect in obesity. Collectively, our findings provide novel insights into FGF21-induced cardiac effects in obesity and ischemia

    SLX4 Assembles a Telomere Maintenance Toolkit by Bridging Multiple Endonucleases with Telomeres

    Get PDF
    SummarySLX4 interacts with several endonucleases to resolve structural barriers in DNA metabolism. SLX4 also interacts with telomeric protein TRF2 in human cells. The molecular mechanism of these interactions at telomeres remains unknown. Here, we report the crystal structure of the TRF2-binding motif of SLX4 (SLX4TBM) in complex with the TRFH domain of TRF2 (TRF2TRFH) and map the interactions of SLX4 with endonucleases SLX1, XPF, and MUS81. TRF2 recognizes a unique HxLxP motif on SLX4 via the peptide-binding site in its TRFH domain. Telomeric localization of SLX4 and associated nucleases depend on the SLX4-endonuclease and SLX4-TRF2 interactions and the protein levels of SLX4 and TRF2. SLX4 assembles an endonuclease toolkit that negatively regulates telomere length via SLX1-catalyzed nucleolytic resolution of telomere DNA structures. We propose that the SLX4-TRF2 complex serves as a double-layer scaffold bridging multiple endonucleases with telomeres for recombination-based telomere maintenance

    Lead Increases Lipopolysaccharide-Induced Liver Injury through Tumor Necrosis Factor-α Overexpression by Monocytes/Macrophages: Role of Protein Kinase C and p42/44 Mitogen-Activated Protein Kinase

    Get PDF
    Although lead and lipopolysaccharide (LPS), both important environmental pollutants, activate cells through different receptors and participate in distinct upstream signaling pathways, Pb increases the amount of LPS-induced tumor necrosis factor-α (TNF-α). We examined the cells responsible for the excess production of Pb-increased LPS-induced TNF-α and liver injury, and the roles of protein kinase C (PKC) and p42/44 mitogen-activated protein kinase (MAPK) in the induction of TNF-α. Peritoneal injection of Pb alone (100 μmol/kg) or a low dose of LPS (5 mg/kg) did not affect serum TNF-α or liver functions in A/J mice. In contrast, coexposure to these noneffective doses of Pb plus LPS (Pb+LPS) strongly induced TNF-α expression and resulted in profound liver injury. Direct inhibition of TNF-α or functional inactivation of monocytes/macrophages significantly decreased the level of Pb+LPS-induced serum TNF-α and concurrently ameliorated liver injury. Pb+LPS coexposure stimulated the phosphorylation of p42/44 MAPK and the expression of TNF-α in CD14(+) cells of cultured mouse whole blood, peritoneal macrophages, and RAW264.7 cells. Moreover, blocking PKC or MAPK effectively reduced Pb+LPS-induced TNF-α expression and liver injury. In summary, monocytes/macrophages were the cells primarily responsible for producing, through the PKC/MAPK pathway, the excess Pb-increased/LPS-induced TNF-α that caused liver injury
    corecore