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ABSTRACT 

Sleep deprivation affects all aspects of health. Adverse health effects by sleep deviation are still underestimated 
and undervalued in clinical practice and, to a much greater extent in monitoring human health. We hypothesized 
that sleep deprivation-induced mild organ injuries; oxidative stress and inflammation might play a crucial role in 
inducing multi-organ injury. Male C57BL/6J mice (n = 6-7) were sleep-deprived for 0-72 h using a modified 
multiple platform boxes method. Blood and tissue were collected. Liver, heart, kidney, lung, and pancreatic inju-
ries were evaluated using biochemical and histological analyses. Glutamic oxaloacetic transaminase (GOT), glu-
tamic pyruvic transaminase (GPT), total billirubin (TBIL), creatine phosphokinase (CPK), creatine phosphoki-
nase-myocardial band (CKMB), lactic dehydrogenase (LDH), creatinine (CRE), and blood urea nitrogen (BUN) 
were assayed in blood. Malondialdehyde (MDA), nitric oxide (NO), tumor necrosis factor (TNF)-, interleukin 
(IL)-1, and IL-6 levels were measured. Histology revealed mild-to-moderate liver and lung injury in sleep-
deprived mice. Sleep-deprived mice had significantly higher GOT, GPT, TBIL, CPK, CKMB, LDH, BUN, and 
-amylase (AMYL) levels, which indicated liver, heart, kidney, and pancreatic injuries. Serum IL-1 at 24 h and 
IL-6 at 72 h were significantly higher in sleep-deprived than in control mice. Hepatic TNF- and IL-1 were 
significantly higher, but IL-6 significantly lower in mice that had been sleep-deprived for 72 h. Sleep depriva-
tion-mediated inflammation may be associated with mild to moderate multi-organ damage in mice. The implica-
tion of this study indicates sleep deprivation in humans may induce multi-organ injury that negatively affects 
cardiovascular and gastrointestinal health.  
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INTRODUCTION 

Sleep has important functions for every 
organ in the body, and sleep deprivation 
leads to disorders that cause irreparable 
damage (Lima et al., 2014). Sleep is a restor-
ative process that plays an important role in 

the balance of psychological and physical 
health. Sleep loss may be associated with 
adverse health effects such as obesity, type 2 
diabetes, hypertension, and cardiovascular 
disease (Grandner et al., 2014; Guo et al., 
2013). Sleep duration among American 
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adults has decreased significantly over the 
past 25 years. A rapid increase in the per-
centage of adults report an average sleep du-
ration of ≤ 6 h/day (Luckhaupt et al., 2010). 

Reduction in sleep duration and sleep quality 
is progressively common in modern society 
and is likely linked to changes in the socio-
economic environment and lifestyle (Bixler, 
2009). The percentage of adults reported 
sleeping 6 h or less increased by 5 % - 6 % 
between 1985 and 2004 (NSF, 2005). How-
ever, both short and long habitual sleep loss 
are associated with an increased risk of mor-
tality (Gangwisch et al., 2008), hypertension 
(Gangwisch et al., 2006), coronary heart dis-
ease (Ayas et al., 2003), and diabetes (Gang-
wisch et al., 2007). Sleep deprivation in hu-
mans and rats show increased food intake 
(Martins et al., 2010; Galvão et al., 2009). 
However, sleep deprived animals show in-
tense catabolism (Hipolide et al., 2006) and 
energy expenditure, resulting in weight loss 
during the sleep deprivation period (Koban 
and Stewart, 2006). In addition, short sleep 
duration is associated with self-rated poor 
health (Steptoe et al., 2006) and elevated 
body mass index (BMI) (Taheri et al., 2004). 

Oxidative stress is as an imbalance be-
tween the formation and elimination of reac-
tive oxygen/nitrogen species and is associat-
ed with several adverse outcomes such as 
cancers, immunodeficiency diseases, neuro-
logical diseases, and cardiovascular diseases 
(Turrens, 2003). Furthermore, it is involved 
in the mechanisms of aging, pathogenesis of 
cancer, atherosclerosis, diabetes, and neuro-
degenerative disorders (Droge, 2002). Free 
radicals accumulate during waking as a re-
sult of enhanced metabolic activity and are 
responsible for the effects of sleep depriva-
tion (Reimund, 1994). Sleep deprivation in 
animals and obstructive sleep apnea syn-
drome in human are also associated with in-
creased oxidative stress (McEwen, 2006; 
Barcelo et al., 2006). 

Inflammation is a type of non-specific 
immune response that functions by directing 
components of the immune system to the site 
of injury. Inflammation can be persistently 

activated in response to disease and genetic 
predisposition, etc. Insufficient sleep can 
provoke inflammation response via increased 
cytokine secretion (Vgontzas et al., 1999). 
Cytokines are associated with sleep, includ-
ing IL-1β, TNF-α, and IL-6 (Opp, 2005). The 
immune system alters during the day along 
with the sleep-wake cycle. Immune cells in 
the blood are increased in the early evening 
and decreased in the morning (Redwine et 
al., 2004). Cytokines serve as chemical mes-
sengers to attract and direct other compo-
nents of the immune system are also at their 
highest levels at night (Redwine et al., 2000; 
Born et al., 1997). Disruption of the normal 
sleep wake cycle via sleep deprivation can 
affect immune function in humans (Simpson 
and Dinges, 2007). 

The focus of the present study was to 
evaluate sleep deprivation-induced multi-
organ injury and the role of oxidative stress 
and inflammation in mice by the modified 
multiple platform method. Our current ani-
mal model was not considered a replication 
of typical real-life human sleep deprivation. 
However, transmeridian flight crews (Brad-
ley and Floras, 2003) and deep-sea fishing 
industry workers (Gander et al., 2008) tend 
to work for more than 3 days with minimal 
sleep. Nonetheless, it is worth pointing out 
that 3 days of complete sleep deprivation is 
unheard of in patients in less than critical 
condition. However, it is common that the 
critically ill can have a near total loss of 
slow-wave sleep, rapid eye movement 
(REM) sleep, or both, for as long as 5-14 
days (Orr and Stahl, 1977). Therefore, we 
studied the effect of sleep deprivation on 
multi-organ injury associated oxidative stress 
and inflammatory indicators in mice. 
 

MATERIALS AND METHODS 

Reagents  
All the chemicals used in this study were 

purchased from Sigma-Aldrich (St. Louis, 
MO). 
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Animals  
Male C57BL/6J mice 7-8 weeks old and 

weighing 25-30 g were purchased from our 
institution’s Laboratory Animal Center. 
They were given a pellet feed diet and water 
ad libitum. They had a 12-h light/dark cycle 
and central air conditioning (25 °C, 70 % 
humidity) throughout the experiment. The 
animal care and experimental protocols were 
in accordance with nationally approved 
guidelines (No. 102122). 

 
Experimental protocols 

A modified multiple platform method 
was used, which uses a REM technique to 
manipulate sleep deprivation, to actuate 
sleep deprivation in mice. An acrylic tank 
(40  30 cm) with 12 columns (platforms, 5 
 3 cm) was filled with 1 cm water. Five 
mice, all from the same cage, were placed in 
each tank for 24, 48, and 72 h, with water 
and food ad libitum. The loss of muscle tone 
associated with sleep deprivation caused 
them to touch the water and wake up. This 
model does not impose restriction of move-
ment or social isolation (Patti et al., 2010). 

Sleep deprivation for 24 h is designated as 
SD1, for 48 h as SD2, and for 72 h as SD3. 

 
Blood collection 

The mice were given a light ethyl ether 
anesthesia, after which blood samples were 
collected. Blood was drawn via venipuncture 
into a serum separation tube, allowed to clot 
for 20-30 min at room temperature, and then 
centrifuged at 15000 rpm at 4 °C for 15 min. 

 
Assessing organ dysfunction and injury 

Organ dysfunction and injury were as-
sessed using a blood biochemical analyzer 
(DRI-CHEM 3500s; Fujifilm, Kanagawa, 
Japan) that measured serum levels of glutam-
ic oxaloacetic transaminase (GOT), glutamic 
pyruvic transaminase (GPT), total billirubin 
(TBIL), creatine-phospho-kinase (CPK), cre-
atine phosphokinase-MB (CKMB), lactic 
dehydrogenase (LDH), creatinine (CRE), 
and blood urea nitrogen (BUN). 

 

Histology and scoring system 
Samples of liver, lung, heart, kidney, and 

pancreatic tissue from the mice were cut and 
placed in 10 % formalin. The samples were 
dehydrated using a graded percentage of eth-
anol and then fixed in paraffin wax for 1 h to 
form blocks. The blocks were trimmed and 
cut into 4-µm thick sections, stained with 
hematoxylin and eosin (H&E), and then 
mounted using Depex-Polystyrene dissolved 
in xylene mountant. The tissue sections were 
examined under a microscope (magnifica-
tion: 100) to assess pathology. 

Four-to-six tissue sections per mouse 
were evaluated at both high and low power. 
Pathology scores of 1-5 were based on the 
percentage of tissue affected: 1 = 0 %, 2 = 1-
25 %, 3 = 26-50 %, 4 = 51-75 %, and 5 = 76-
100 %. Categories included interstitial 
changes (interstitial or interalveolar septal 
thickening), inflammation (intra-alveolar 
neutrophilic infiltrate), and consolidation (a 
combination of both cellular debris and fi-
brin-filled alveolar space) (Srinivasan and 
Liu, 2012). Liver injury was scored using a 
slightly modified protocol: 1 = 0 %, 2 = 1-
10 %, 3 = 11-20 %, 4 = 21-30 %, and 5 = 31-
40 % (Srinivasan and Liu, 2012; Periasamy 
et al., 2011). 

 
Measuring nitric oxide content  

Briefly, the amount of nitric oxide (NO) 
in liver tissue was measured after the Griess 
reaction. Liver tissue was homogenized in 
deionized water (1:10, wt/vol). Tissue ho-
mogenate (500 L) was centrifuged at 
2500 g for 10 min at 4 °C. Supernatant 
(100 L) was incubated with 100 L of 
Griess reagent at room temperature for 20 
min. The absorbance was measured at 550 
nm using the spectrophotometer. NO con-
centration was calculated by comparing it 
with a standard solution of known sodium 
NO concentration. 

 
Measuring lipid peroxidation levels 

Liver tissue was homogenized in Tris 
HCl (20 mmol/L; pH 7.4). Tissue homoge-
nate (500 L) was centrifuged at 2500 g for 
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10 min at 4 °C, and the supernatant (200 L) 
was measured at 586 nm for lipid peroxida-
tion (Lipid Peroxidase Assay Kit; Calbio-
chem-Novabiochem, Darmstadt, Germany) 
using the spectrophotometer. 

 
Measuring TNF-, IL-1, and IL-6 levels 

Tissue was homogenized in deionized 
water (1:10; wt/vol) and centrifuged at 
1250 g for 10 min at 4 °C. The TNF-, IL-
1, and IL-6 levels in the tissue supernatant 
were determined using an enzyme-linked 
immunosorbent assay (ELISA) (R&D Sys-
tems, Minneapolis, MN). TNF-, IL-1, and 
IL-6 were assessed by measuring absorbance 
at 450 nm and extrapolating from a standard 
curve with a sensitivity limit of 32.5 pg/mL. 
Protein concentration (pg/mg) in liver tissue 
was determined using protein assay dye 
(Bio-Rad Laboratories, Hercules, CA). 

 
Statistical analysis  

All statistical analyses were done using 
SPSS 11.0.1 (SPSS Inc., Chicago, IL). Data 
are means ± standard deviation (SD). Differ-
ences in the measured variables between 
each group were assessed using Fisher’s 
Least Significant Difference (LSD) test. Sig-
nificance was set at P < 0.05. 
 

RESULTS 

Serum IL-1, IL-6, and NO levels in sleep-
deprived mice 

Serum IL-1 was significantly higher in 
mice deprived of 24 h of sleep (SD1) than in 
controls (N). The changes in IL-1 levels 
were time dependent: IL-1 levels in mice 
deprived of 72 h of sleep (SD3) were non-
significantly lower than in controls (Figure 
1a). The changes in serum IL-6 levels were 
also time dependent: IL-6 was nondetectable 
in controls and highest in SD3 group mice 
(Figure 1b). Serum NO was significantly 
lower in all three SD groups than in controls 
(Figure 1c). 

 

Liver injury, cytokines, LPO, and NO levels 
Serum GOT, GPT, and TBIL were, ex-

cept for the TBIL level in the SD1 group, 
significantly and time-dependently higher in 
SD group mice than in controls (Figure 2a-
c). There was no significant difference be-
tween the SD2 and SD3 groups in GOT, 
GPT, or TBIL levels. 

SD1 group mice showed a mild morpho-
logical change in hepatocytes. SD2 and SD3 
group mice showed mild necrotic hepato-
cytes around the central and portal vein. Few 
atypical hepatocytes with cytoplasmic en-
largement and increased nuclear density 
were observed. Hepatocytes exhibited mild-
to-moderate swelling or ballooning, pale cy-
toplasm, and few lytic necrosis (Figures 2d 
and 3). 

TNF- (Figure 4a), IL-1 (Figure 4b), 
and IL-6 (Figure 4c) were significantly lower 
in SD1 group mice than in controls, but the 
differences between SD2, SD3, and control 
group mice were non-significant. 

Hepatic LPO levels in SD group mice 
were not significantly different from those in 
controls (Table 1). NO levels were signifi-
cantly higher in the SD groups than in the 
control group. The differences between the 
SD groups were not significant (Figure 4d). 

 
Lung injury, cytokines, LPO, and NO levels 

Lung pathology showed more histologi-
cal evidence of lung injury mild-to-moderate 
interstitial thickening, and cellular infiltra-
tion in the interstitium and alveolar com-
partments in SD group mice than in control 
group mice. In addition, SD3 group mice 
showed greater interstitial thickening and 
thickening of the bronchial cartilage (Figure 
5a). Lung histological scores were signifi-
cantly higher in the SD groups than in the 
control group, SD2 and SD3 group scores 
were significantly higher than were SD1 
group scores (Figure 5b). 

TNF- (Figure 6a) and IL-6 (Figure 6b) 
levels were significantly higher in SD2 and 
SD3 group mice than in control group mice. 
IL-1 (Figure 6c) was significantly higher in 
SD2 group mice than in control group mice.  
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Figure 1: Effect of sleep deprivation on serum 
cytokines and nitric oxide (NO). N: control mice 
(not sleep-deprived); SD1: mice sleep-deprived 
for 24 h; SD2: mice sleep-deprived for 48 h; 
SD3: mice sleep-deprived for 72 h. (a) serum in-
terleukin (IL)-1; (b) serum IL-6; (c) serum NO. 
Data are means  SD.  
a,b,c The differences between treatments with different letters 
are significant (P < 0.05). 

 
 

 
Figure 2: Effect of sleep deprivation on liver 
markers. (See groups and treatment details in 
legend for Figure 1). (a) glutamic oxaloacetic 
transaminase (GOT); (b) glutamic pyruvic trans-
aminase (GPT); (c) total billirubin (TBIL); (d) his-
tological score. Data are means  SD.  
a,b,c The differences between treatments with different letters 
are significant (P < 0.05). 

 

 
Figure 3: Effect of sleep deprivation on liver his-
tology. (See groups and treatment details in leg-
end for Figure 1). Photomicrographs of liver his-
tology at [10]  [10] 
 
 

 
Figure 4: Effect of sleep deprivation on liver cy-
tokines and NO. (See groups and treatment de-
tails in legend for Figure 1). (a) Tumor necrosis 
factor (TNF)-; (b) IL-1; (c) IL-6; (d) NO. Data 
are means  SD.  
a,b The differences between treatments with different letters 
are significant (P < 0.05). 

 
 

In SD1 and SD3 group mice, however, IL-1β 
levels were significantly lower than in con-
trol group mice. NO levels were significantly 
different (higher) only in the SD3 group 
(Figure 6d). The differences in LPO levels 
between all four groups were nonsignificant 
(Table 1). 
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Figure 5a: Effect of sleep deprivation on lung 
histology. (See groups and treatment details in 
legend for Figure 1). Photomicrographs of liver 
histology at [10]  [10] 

 

 

Figure 5b: Effect of sleep deprivation on lung 
histology score. (See groups and treatment de-
tails in legend for Figure 1). Data are means  
SD.  
a,b,cThe differences between treatments with different letters 
are significant (P < 0.05). 
 
 

 

Figure 6: Effect of sleep deprivation on lung cy-
tokines and NO. (See groups and treatment de-
tails in legend for Figure 1). (a) TNF-; (b) IL-1; 
(c) IL-6; (d) NO. Data are means  SD.  
a,b,cThe differences between treatments with different letters 
are significant (P < 0.05). 

Group 

Liver Lung Kidney Spleen 

LPO LPO TNF- IL-6 NO LPO LPO 

µmol/g µmol/g pg/mg pg/mg µmol/g µmol/g µmol/g 

protein protein protein protein protein protein protein 

N 
0.172 ± 

0.05 
0.476 ± 

0.19 
157.45 ± 

35.23 
144.71 ± 

34.46 
5.889 ± 

1.41 
0.643 ± 

0.21 
0.574 ± 

0.26 

SD1 
0.146 ± 

0.06 
0.501 ± 

0.19 
129.15 ± 

40.06 
119.70 ± 

39.65 
5.203 ± 

1.88 
0.571 ± 

0.20 
0.643 ± 

0.18 

SD2 
0.161 ± 

0.05 
0.525 ± 

0.28 
133.55 ± 

53.94 
121.10 ± 

49.77 
4.184 ± 

2.03 
0.517 ± 

0.18 
0.698 ± 

0.31 

SD3 
0.147 ± 

0.06 
0.569 ± 

0.17 
140.68 ± 

34.89 
130.47 ± 

30.16 
4.509 ± 

0.94 
0.604 ± 

0.14 
1.028 ± 

0.35 

Table 1: Parameters unaltered in sleep deprivation 
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Myocardial injury, cytokines, malondialde-
hyde (MDA), and NO levels 

Serum creatine phosphokinase (CPK) 
was significantly and time-dependently 
higher in the SD group mice than in the con-
trols. The difference between the SD2 and 
SD3 groups was nonsignificant (Figure 7a). 
Serum creatine kinase myocardial band 
(CKMB) levels were significantly higher in 
the SD2 and SD3 group mice than in the 
controls; however, they were nonsignificant-
ly lower in SD1 group mice than in control 
mice (Figure 7b). Serum LDH was signifi-
cantly and time-dependently higher in SD 
group mice than in controls, and significant-
ly higher in SD3 group mice than in SD1 and 
SD2 group mice (Figure 7c). Heart MDA 
levels were significantly lower in SD2 and 
SD3 mice than in SD1 and control mice 
(Figure 7d: “ab” above SD1 bar means “no 
difference when compared with ‘a’ or ‘b’”). 

Heart TNF- and IL-1 levels were sig-
nificantly higher only in SD1 and SD2 group 
mice than in control mice (Figure 8a, b: “ab” 
above SD2 bar in (a) and above SD3 bar in 
(b) means “no difference when compared 
with ‘a’ or ‘b’”). IL-6 was significantly higher 
in SD1 group mice (Figure 8c). Heart NO 
levels were significantly higher only in SD1 
group mice and significantly lower in SD3 
mice (Figure 8d). 

 
Serum BUN, LPO, NO, TNF-, and IL-6 
levels  

Serum BUN levels were time-
dependently and significantly higher in the 
SD group mice (Figure 9) than in the con-
trols, but there were no significant differ-
ences in serum LPO, NO, TNF-, or IL-6 
levels between the four experimental groups 
(Table 1). 

 
 

 
Figure 7: Effect of sleep deprivation on heart 
markers and MDA. (See groups and treatment 
details in legend for Figure 1). (a) Creatine phos-
phokinase (CPK); (b) creatine kinase myocardial 
band (CKMB); (c) lactic dehydrogenase (LDH); 
(d) malondialdehyde (MDA) (“ab” above SD1 bar 
means “no difference when compared with ‘a’ or 
‘b’”). Data are means  SD.  
a,b,cThe differences between treatments with different letters 
are significant (P < 0.05). 

 
 

 
Figure 8: Effect of sleep deprivation on heart cy-
tokines and NO. (See groups and treatment de-
tails in legend for Figure 1). (a) TNF-; (b) IL-1; 
(c) IL-6; (d) NO. Data are means  SD.  
a,b,cThe differences between treatments with different letters 
are significant (P < 0.05). (“ab” above SD2 bar in (a) and (c) 
and above SD3 bar in (b) means “no difference when com-
pared with ‘a’ or ‘b’”). 
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Spleen TNF-, IL-1, and NO levels 
Spleen TNF- (Figure 10a) and IL-1 

(Figure 10b) were significantly lower in SD3 
group mice than in control mice. However, 
TNF- and IL-1 levels in the SD1 and SD2 
groups were not significantly different from 
those in the control group, nor were IL-6 
levels between the four experimental groups 
significantly different (Table 1). 

NO levels were significantly lower in 
SD3 mice, but not in SD1 or SD2 mice, than 
in control mice (Figure 10c). There were no 
significant differences in spleen LPO levels 
between the experimental groups (Table 1). 

 

 
Figure 9: Effect of sleep deprivation on kidney 
marker. (See groups and treatment details in 
legend for Figure 1). Blood urea nitrogen (BUN). 
Data are means  SD.  
a,b,cThe differences between treatments with different letters 
are significant (P < 0.05). 

 

 
Figure 10: Effect of sleep deprivation on spleen 
cytokines and NO. (See groups and treatment 
details in legend for Figure 1). (a) TNF-; (b) IL-
1; (c) NO. Data are means  SD.  
a,bThe differences between treatments with different letters 
are significant (P < 0.05). 

DISCUSSION 

Sleep deprivation-induced moderate mul-
ti-organ injury through oxidative stress and 
inflammation in mice. Sleep deprivation in-
creased serum GOT, GPT, and TBIL indicat-
ing liver injury. Liver cytokines were altered 
in sleep deprived mice. In addition, sleep 
deprivation increased nitrite level.  Serum 
CPK, CKMB, and LDH were increased 
demonstrating myocardial injury. Myocardi-
al TNF-α, IL-1β, and IL-6 were increased in 
initial 24 h and subsequently decreased in 
72 h of sleep deprivation. Myocardial oxida-
tive stress indicated by MDA and NO were 
decreased on sleep deprivation. BUN in-
creased signifying kidney dysfunction. Sleep 
deprivation increased lung edema, nitrite, 
TNF-α, IL-1β, and IL-6 level. In addition, it 
decreased spleen nitrite, TNF-α, and IL-1β 
level indicating immune compromise. 

Sleep deprivation-induced liver injury. 
Sleep deprivation increased GOT, GPT, and 
TBIL. In addition, it increased hepatic ni-
trite; however, no alterations in the level of 
lipid peroxidation. Sleep deprivation induced 
mild morphological change in the liver. Mild 
necrotic hepatocytes were observed around 
central and portal vein. In addition, cyto-
plasmic enlargement with increased nuclear 
density and mild swelling or ballooning of 
hepatocytes was found in sleep deprived an-
imals. Time (24-72 h) dependent increase in 
GOT, GPT, and TBIL in sleep deprived an-
imals indicated mild liver injury. Inflamma-
tory cytokines decreased at 24 h and back to 
normal in 48 and 72 h sleep deprivation. 
However, nitric oxide increased in all sleep 
deprived animals.   

Few previously published studies report-
ed sleep deprivation may not cause oxidative 
damage, nor that can it represent an oxida-
tive stress for the brain or for peripheral tis-
sue such as liver and skeletal muscle (Gopa-
lakrishnan et al., 2004). In addition, sleep 
deprivation effects have not been localized to 
a specific tissue or system, and structural 
damage has not been observed in histo-
pathology slides of major peripheral organs 
(Everson, 1993). In contrary, it is also re-
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ported that peripheral cell membrane damage 
is an early consequence of sleep deprivation, 
relative to advanced morbidity and lethality 
(Everson et al., 2005). Sleep deprived (72 h) 
male volunteers reported increased plasma 
AST and ALT level (Ilan et al., 1992) indi-
cating liver injury. Sleep deprivation at least 
partially mediated by reactive oxygen spe-
cies (Lima et al., 2014; Brown and Naidoo 
2010; Ramanathan et al., 2002). In addition, 
it induces noxious metabolic and immuno-
logical alterations that eventually lead to le-
thal consequences; it is thought that anti-
oxidant imbalance mediates these alterations. 
Elevated oxidative stress and insufficient an-
tioxidant activities may result in liver cell in-
jury (Lima et al., 2014; Everson et al., 2005). 

Hepatic nitrite level increased, however, 
MDA level remain unaltered in sleep de-
prived mice. Therefore, no identified oxida-
tive stress marker that directly linked oxida-
tive stress and hepatic cell injury in cause-
and-effect relationships (Everson et al., 
2005). In sleep deprived subjects, neutrophil 
migrates into interstitial spaces of organs 
signifies important biochemical alterations 
(Everson et al., 2008). During tissue injury, 
mediators diffuse from the site of injury and 
activate the endothelium. Circulating phago-
cytes are activated, bind to endothelium, and 
pass out of the blood vessel dissolving the 
basement membrane. Neutrophils migrate in-
to the tissues based on the strength of the 
chemotactic factors formed by alterations in 
the biochemistry of the tissues (Everson et 
al., 2008). Oxidative stress may lead to cell 
death and also decreases non-enzymatic an-
tioxidants in the cell, therefore the oxidative 
stress is not quenched, ultimately leads to 
oxidant damage (Everson et al., 2005). 

Sleep deprivation-induced lung and my-
ocardial injury; altered inflammatory cyto-
kines and oxidative stress parameters. His-
tology of lung revealed mild to moderate in-
terstitial thickening, and cellular infiltration 
in the interstitium and alveolar compart-
ments. Inflammatory processes are the etio-
logical root of several medical evils. There-
fore, inflammatory processes that may be in-

duced by sleep deprivation are believed to 
have clinical and biological relevance, as 
well as potentially far-reaching implications 
(Everson et al., 2008). Sleep deprivation has 
been demonstrated by increased pro-inflam-
matory cytokines, appetite, and blood pres-
sure as well as cortisol levels (Copinschi, 
2005). It also leads to circadian rhythms dis-
ruption that has enormous implications in the 
pathogenesis of cardiac and renal disease 
(Martino et al., 2008). Circadian rhythms 
play a pivotal role in the regulation of cardi-
ovascular physiology. Disruption of diurnal 
rhythms increases mortality in cardiomyopa-
thic hamsters (Penev et al., 1998) and exac-
erbates pressure overload myocardial hyper-
trophy (Martino et al., 2008). Diurnal cy-
cling plays a key role in organ growth and 
renewal and disruption is a key contributor 
to disease (Martino et al., 2008). In the pre-
sent study, alterations in the pro-inflam-
matory cytokines and oxidative stress might 
play a role in the lung and myocardial injury 
in sleep deprived mice. 

Sleep deprivation-induced renal dysfunc-
tion indicated by elevated BUN. Integrity of 
peripheral organs such as the heart and kid-
ney depends on the circadian coordination. 
Long-term disruption of circadian rhythms, 
in shift workers, transoceanic flight attend-
ants, or patients with sleep disturbances, can 
ultimately result in heart and kidney disease 
(Martino et al., 2008). Circadian clocks pro-
vide temporal organization for the prolifera-
tion of renal tubular epithelial cells may give 
evidences about cortical cell apoptosis, and 
renal pathology (Martino et al., 2008). 

Sleep deprivation altered inflammatory 
cytokines and oxidative stress in spleen and 
serum. Sleep disruption have profound ef-
fects on the immune system. Alterations of 
the sleep wake cycle affect the number of 
circulating lymphocytes, natural killer cells, 
antibody titers, and levels of cytokines in 
humans (Mullington et al., 2009; Hui et al., 
2007; Palma et al., 2006; Everson, 2005), 

and rodents (Palma et al., 2006; Everson, 
2005; Renegar et al., 1998), and increased 
inflammatory cytokines such as IL-6, C-
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reactive protein, and TNF-α (Mullington et 
al., 2009; Vgontzas et al., 2004; Meier-Ewert 
et al., 2004) which translate into impaired 
immune function (Redwine et al., 2004; 
Everson, 1993). Sleep restriction in human 
was characterized by higher mitogen-
stimulated levels of pro-inflammatory agents 
such as TNF-α and MCP-1, and a shift to-
wards Th2 activity, as reflected by an altered 
Th1/Th2 cytokine balance (Axelsson et al., 
2013). 

To conclude, sleep deprivation might in-
duce multiple organ injury with altered cyto-
kines and oxidative stress. Sleep deprivation 
in humans with static night shifts, flex shifts, 
extended shifts, rotating shifts, and frequent 
international travel by airline flight crews 
might undergo mild multiple organ injury 
which is undetected. Successive multi-organ 
injuries scar organs and induce fibrosis, 
which causes myocardial infarction, diabetes 
mellitus, and liver and kidney dysfunction. 
This might explain these chronic diseases in 
humans who undergo long-term successive 
sleep deprivation.  
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