184 research outputs found

    A neural network-based direct adaptive fault tolerance flight control for control surface damage

    Get PDF
    AbstractIn order to enhance the reliability of flight control systems, a new neural network-based direct adaptive fault tolerance control was proposed for flight control system in the presence of control surface damage. Based on the accuracy approach of neural network, a fault parameter identification models were built to constitute hybrid compensator in order to ensure the strictly positive real of the failure flight control systems in the inner control loop. In the outer loop, a common direct adaptive controller was designed. The scheme was illustrated through simulations using an aircraft. The results show that an aircraft has also good dynamic performance in the control surface damage

    Universal higher-order bulk-boundary correspondence of triple nodal points

    Full text link
    Triple nodal points are degeneracies of energy bands in momentum space at which three Hamiltonian eigenstates coalesce at a single eigenenergy. For spinless particles, the stability of a triple nodal point requires two ingredients: rotational symmetry of order three, four, or six; combined with mirror or space-time-inversion symmetry. However, despite ample studies of their classification, robust boundary signatures of triple nodal points have until now remained elusive. In this work, we first show that pairs of triple nodal points in semimetals and metals can be characterized by Stiefel-Whitney and Euler monopole invariants, of which the first one is known to facilitate higher-order topology. Motivated by this observation, we then combine symmetry indicators for corner charges and for the Stiefel-Whitney invariant in two dimensions with the classification of triple nodal points for spinless systems in three dimensions. The result is a complete higher-order bulk-boundary correspondence, where pairs of triple nodal points are characterized by fractional jumps of the hinge charge. We present minimal models of the various species of triple nodal points carrying higher-order topology, and illustrate the derived correspondence on Sc3AlC which becomes a higher-order triple-point metal in applied strain. The generalization to spinful systems, in particular to the WC-type triple-point material class, is briefly outlined

    Triple nodal points characterized by their nodal-line structure in all magnetic space groups

    Full text link
    We analyze triply degenerate nodal points [or triple points (TPs) for short] in energy bands of crystalline solids. Specifically, we focus on spinless band structures, i.e., when spin-orbit coupling is negligible, and consider TPs formed along high-symmetry lines in the momentum space by a crossing of three bands transforming according to a one-dimensional (1D) and a two-dimensional (2D) irreducible corepresentation (ICR) of the little cogroup. The result is a complete classification of such TPs in all magnetic space groups, including the nonsymmorphic ones, according to several characteristics of the nodal-line structure at and near the TP. We show that the classification of the presently studied TPs is exhausted by 13 magnetic point groups (MPGs) that can arise as the little cogroup of a high-symmetry line and which support both 1D and 2D spinless ICRs. For 10 of the identified MPGs, the TP characteristics are uniquely determined without further information; in contrast, for the 3 MPGs containing sixfold rotational symmetry, two types of TPs are possible, depending on the choice of the crossing ICRs. The classification result for each of the 13 MPGs is illustrated with first-principles calculations of a concrete material candidate

    Astragalus Polysaccharides Lowers Plasma Cholesterol through Mechanisms Distinct from Statins

    Get PDF
    To determine the efficacy and underlying mechanism of Astragalus polysaccharides (APS) on plasma lipids in hypercholesterolemia hamsters. The effect of APS (0.25g/kg/d) on plasma and liver lipids, fecal bile acids and neutral sterol, cholesterol absorption and synthesis, HMG-CoA reductase activity, and gene and protein expressions in the liver and small intestine was investigated in twenty-four hypercholesterolemia hamsters. Treatment periods lasted for three months. APS significantly lowered plasma total cholesterol by 45.8%, triglycerides by 30%, and low-density lipoprotein-cholesterol by 47.4%, comparable to simvastatin. Further examinations revealed that APS reduced total cholesterol and triglycerides in the liver, increased fecal bile acid and neutral sterol excretion, inhibited cholesterol absorption, and by contrast, increased hepatic cholesterol synthesis and HMG-CoA reductase activity. Plasma total cholesterol or low-density lipoprotein-cholesterol levels were significantly correlated with cholesterol absorption rates. APS up-regulated cholesterol-7α-hydroxylase and LDL-receptor gene expressions. These new findings identify APS as a potential natural cholesterol lowering agent, working through mechanisms distinct from statins

    Multi-band nodal links in triple-point materials

    Full text link
    We study a class of topological materials which in their momentum-space band structure exhibit three-fold degeneracies known as triple points. Specifically, we investigate and classify triple points occurring along high-symmetry lines of PT\mathcal{P}\mathcal{T}-symmetric crystalline solids with negligible spin-orbit coupling. By employing the recently discovered non-Abelian band topology, we argue that a rotation-symmetry-breaking strain transforms a certain class of triple points into multi-band nodal links. Although multi-band nodal-line compositions were previously theoretically conceived, a practical condensed-matter platform for their manipulation and inspection has hitherto been missing. By reviewing the known triple-point materials in the considered symmetry class, and by performing first-principles calculations to predict new ones, we identify suitable candidates for the realization of multi-band nodal links. In particular, we find that Li2_2NaN is an ideal compound to study this phenomenon, where the band nodes facilitate largely tunable density of states and optical conductivity with doping and strain, respectively. The multi-band linking is expected to equip the nodal rings with monopole charges, making such triple-point materials a versatile platform to probe the non-Abelian band topology.Comment: 4 pages (3 figures, 1 table) + 13 pages of Supplemental Material (13 figures, 3 tables) + reference

    Analysis of the Seismic Performance of Site-Bolted Beam to Column Connections in Modularized Prefabricated Steel Structures

    Get PDF
    This paper proposes a site-bolted connection that is suitable for modularized prefabricated steel structures. Excellent ductility is achieved by various structural measures. Six connection specimens with different parameters were subjected to quasi-static loading tests and finite element analysis (FEA) to determine the seismic performance of the proposed connection (e.g., hysteretic behavior, skeleton curve, ductility, and failure mode). The results of the tests and FEA showed that the connection underwent sufficient plastic deformation under cyclic loading and that its ultimate rotation angle could reach 0.09 rad. A clear plastic hinge formed on the beam before the connection failed, which suggests a ductile failure mode. The connection exhibited a wide hysteresis loop, which indicated good seismic performance. The results also showed that the connection does not slip under small earthquakes and could dissipate energy through slippage in the connection region under a moderate earthquake and through slippage in the connection region as well as plastic deformation at the beam end under a severe earthquake. The number of bolts was the main parameter that affected the seismic performance of the connection. The test and FEA results demonstrated that all six specimens had excellent seismic and ductile performance and an exceptional plastic rotation capacity

    Orbital Variations and Impacts on Observations from SNPP, NOAA 18-20, and AQUA Sun-Synchronous Satellites

    Get PDF
    The AQUA, SNPP, and NOAA 18-20 PM sun-synchronous satellites were designed with similar local time, local solarzenith angles, and overlapping temporal coverage. Although the satellites are expected to have fixed local equator-crossing time, during the satellite lifetime, the equator-crossing times of these satellites drift. For NOAA 18-19, the driftin equator-crossing time is significant (few hours) and no correction has been done over the lifetime. For SNPP andAQUA, correction in the orbital inclination angle was periodically performed to maintain the equator-crossing timearound the designed value. The impact of systematic drift of the local observation time during the satellite life cycle canbe significant and should be accounted for when using multi-year time series of satellite products in long-termenvironmental studies. In this paper, the equator-crossing time drift of AQUA, SNPP, and NOAA 18-20, the correctionof SNPP and AQUA equator-crossing time via orbital inclination angle change, and the consequent local solar zenithangle variation are evaluated. The impact of such drift on low-latitude mean brightness temperature trend derived fromthe similar ~11 m thermal emissive channel of AQUA MODIS CH31, SNPP Visible Infrared Imaging RadiometerSuite (VIIRS) CH15 and NOAA 18-19 HIRS CH08 are analyzed. The drift in the mean brightness temperature measuredby these sensors is combined as a function of local time and analyzed using diurnal cycle analysis. The mean brightnesstemperature drift for SNPP VIIRS is reconciled within the context of much larger temperature drift of NOAA 18-19

    Studies on the flavonoid compounds of Origanum vulgare L.

    Get PDF
    104-10
    • …
    corecore