
Procedia Engineering 15 (2011) 147 – 151

1877-7058 © 2011 Published by Elsevier Ltd.
doi:10.1016/j.proeng.2011.08.030

Available online at www.sciencedirect.com
Available online at www.sciencedirect.com

Procedia
Engineering

          Procedia Engineering  00 (2011) 000–000 

www.elsevier.com/locate/procedia

A neural network-based direct adaptive fault tolerance flight 
control for control surface damage

Liu Xiaoxiong a*, Sun Liyuan, Chen Kang, Gu Wei 
School of Automation, Northwestern Polytechnical University, xi’an, China 

Abstract 

In order to enhance the reliability of flight control systems, a new neural network-based direct adaptive fault 
tolerance control was proposed for flight control system in the presence of control surface damage. Based on the 
accuracy approach of neural network, a fault parameter identification models were built to constitute hybrid 
compensator in order to ensure the strictly positive real of the failure flight control systems in the inner control loop. 
In the outer loop, a common direct adaptive controller was designed. The scheme was illustrated through simulations 
using an aircraft. The results show that an aircraft has also good dynamic performance in the control surface damage. 
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1. Introduction 

With the complex flight mission and enhancing maneuver ability, the aircraft could undergo damage in 
certain situations. The control surface failures will bring accident for aircraft, so it is important to design 
fault tolerance flight control systems to improve reliability and safety. When failures occur, flight control 
system usually takes on uncertainty and nonlinear. So fault-tolerant control aims at possessing adaptive 
ability and making the system stable and retaining acceptable performance under the system faults.  
Direct adaptive control (DAC) theory can deal with uncertainty control problem, so it is used to flight 
control, robot, and motor control system[1-4]. Muhammad Yasser etc had widely researched neural 
network-based direct adaptive control method[5]. 

There are many advantages for using direct adaptive control to design control systems, but the systems 
must ensure the positive real which restrict the application field of direct adaptive control. At the same 
time, control surface failure will influence flight control system’s state and output, so it is the key 
problem of fault tolerance control system how to compensate the uncertainty in order to realize the 
positive real. Considered above problems, in this paper the neural network is used to compensate the 
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influence of failure so that the flight control system fulfils the positive real and gradually stability. The 
performance of the scheme was validated by the nonlinear simulation for a flight control system. As a 
conclusion, adaptive fault tolerance flight control is achieved. 

2. Problem statement 

In general, aircraft dynamics are inherently nonlinear. In the fault-free case, the flight control system 
dynamics can be described by the state-space model as following 
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Here, ( ) nx t R∈  is the state vector, ( ) mu t R∈  is the input vector, ( ) R ly t ∈  is the output vector. The 

matrices A , B , C and D are uniformly bounded. ( )tid and ( )t0d  are some bounded input and output 

disturbance. According to flight control aerodynamic function, the elevator eδ , aileron aδ , rudder rδ , and 

thrust tδ  as input, body-axis roll rates q , pitch rates p , and yaw rates r as state, the aircraft state-space 
model become as following 
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Here, q  is dynamic pressure, α and β  are angle of attack and sideslip angle. b and S are wing span and 

wing reference area. xI , yI , zI , and xzI  are mass moments of inertia. lC , mC , and nC  are body-axis 

non-dimensional aerodynamic moment coefficients. 
Actuator damage can cause the presence of variations in aerodynamic coefficients or control 

effectiveness deficiencies. In the fault case, the aircraft state-space model become as following 

( ) ( ( ) ( )) ( ) ( ( ) ( )) ( ) ( , )ix t A x A x x t B x B x u t d x t= + Δ + + Δ +&   (3) 

Here, [ , , ]x p q r Τ=& & & & ， [ ], , ,u e a r tδ δ δ δ
Τ

= ， ( )A xΔ  is the change of state matrix because of control 

surface failure. ( )B xΔ  is the change of input matrix because of control surface failure.  
In this paper fault tolerance control design objective is that used neural network to compensate 
( )A xΔ and ( )B xΔ in order to assure the output of fault aircraft can perfectly track the trajectory of the 

reference model, and maintain flight control system stability and dynamic performance. 

3. A novel neural network-based direct adaptive fault tolerance flight control 

3.1.  system architecture 

A scheme of a novel neural network-based direct adaptive fault tolerance flight control (NDAC) is 
introduced (illustrated in Fig.1). The online learning BP neural network identification model is designed 
by using BP neural network adjusting its weights for the purpose of making the error small. A failure 
parameter model is built by using neural network approximation performance in order to bring the 



149Liu Xiaoxiong et al. / Procedia Engineering 15 (2011) 147 – 151 Liu Xiaoxiong ,et al / Procedia Engineering 00 (2011) 000–000 3

combination feedforward compensator. Thus the control system will satisfy the positive real. At the same 
time, in the outer loop, a nominal direct adaptive controller is designed, which keeps common structure. 
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Fig.1. Neural network-based direct adaptive fault tolerance flight control 

3.2. direct adaptive control 

The direct adaptive control based on the command generator tracker. It is assumed that plant is almost 
strictly passive. Direct adaptive control algorithms can perfectly track the trajectory of the reference 
model and maintain control system stability. In many realistic environments, the controlled aircraft has 
the formula (1). The output of the aircraft must follow the output of the reference model.  
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This model incorporates the desired input-output behaviour of the plant. Let the output tracking error 
be defined as ( ) ( ) ( )e t y t y ty m= − .

And use the following direct adaptive control algorithm 
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The adaptive gains are a combination of proportional and integral gains which can be adaptive 
adjustment online. The detailed direct adaptive control algorithm can see the reference [1]. 
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Here, pT and iT  are constant parameter matrix，σ  is error compensation coefficient. Control system 

design aim is that the tracking errors approach the zero so that it tracks completely. 

3.3. neural Network training 

BP neural networks can approximate any a continuous function to satisfy precision by choosing 
reasonable network structure. BP algorithm is a propagation-training method of weight in neural network 
which is along the error direction. In order to get the online identification model, a gradient descend 
algorithm based iterative is introduced. In this paper, the neural network acts as identification model, 
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which hidden transfer function is Sigmoid and output transfer function is line function. Defining neural 
network input layers nodes as ix , hidden layers nodes as jh , output layers nodes as ly . jiw  denotes the 

linear coefficients between input and hidden layers. liw  denotes the linear coefficients between hidden 
layers and output.   

That, the training algorithm of the neural network weight is defined as following  
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Here kx  is network weight, η  is learning ratio, ξ is the additional momentum. 
According to cost function, the gradient of weight is as following 
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That, the training algorithm of the output weight is defined as following  
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Here 1( )kο is the output of network hidden layers. 1
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In the same way, the training algorithm of the hidden weight is defined as following  

22( ) ( 1) (1 ) ( )ji jiw k w k kη ξ η δ οΔ = Δ − + −  (10) 

Here 2 ( )kο  The input of network input layers. 2 1( ( )) ( )ljf net k w kδ δ′= Δ .

4. simulation result 

In this paper, the flight condition is a straight level flight condition at 5000~9000 m altitude and 0.5 
mach. The sampling period is chosen to be 0.01 second, and simulation time is 50 second. Aircraft 
maneuvering is set as follows: firstly climb, then attitude holding, finally right turning. For the case 1 
without fault, system response is shown in Fig.2. From the response of roll rates and normal load, the 
closed-loop response is fairly fast without overshoot. In addition the aircraft almost perfectly track the 
trajectory of reference model. But systems output fluctuated a little in the initiatory time when NDAC is 
used because the neural network learn algorithm is adjusted in online. 



151Liu Xiaoxiong et al. / Procedia Engineering 15 (2011) 147 – 151 Liu Xiaoxiong ,et al / Procedia Engineering 00 (2011) 000–000 5

      Fig.2. System response without failure                                 Fig.3. System response with 50% left elevator failure 

         

Fig.4. System response with 50% left aileron                    Fig.5. System response with 50% rudder failure 

The fault scenarios are control surface loss. All faults are simulated to occur at 10 second. The specific 
failures are a partial loss 50% of the rudder control surface, left aileron, and left elevator. When the 
sudden failure of control surface occurs at 10 second respectively, the system responses are shown in 
Fig.3-5. When failure occurs, system output is changed. But using the proposed adaptive scheme, the 
aircraft can keep stability and handling qualities, and reconfiguration process is rapid and in time. In 
conclusion, the proposed adaptive scheme is achieved. 
5. Conclusion  

Because actuator damages are occurred suddenly in the fly, the failure aircraft takes on usually 
uncertainty. In this paper a new neural network-based direct adaptive fault tolerance flight control 
algorithm is proposed for the presence of control surface damage. The positive real of failure control 
system is content by using online neural network method. The proposed algorithm is satisfying from the 
simulation, which failure information need not be known for reconfiguration actuator failures and the 
output of fault aircraft tracks perfectly trajectory of the reference model. 
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