507 research outputs found
Study on the application of a new multiepoxy reinforcement agent for sheep leather
Content:
Leather is a kind of natural biomass composite material which is made of animal skin as material by a series of chemical and physical processing. Its main structure is Collagen fibers of three-dimensional
network structure. As we all know sheep leather always exist a common problem with low strength, while the strength of leather depended on the woven degree of collagen fibers. Through the past decades, many methods have been tried to improve the properties of sheep leather. The most commonly used methods are retanning. However, the strength enhancement of sheep leather is extremely limited by retanning, although the fullness and softness may be improved. In this study, a new type of multi-epoxy reinforcement agent (IGE) and IGE with the synergistic effect of polyamine (IGE-PA) were used to enhance the strength of sheep leather in tanning and fatliquoring process. Comparing with chromium tanned leather, it was found that under the optimized conditions (dosage: 10%, pH: 8, Temperature: 35℃ for penetration and 45℃ for fixation, tanning time: 10 h) with IGE as the main tanning agent, the tearing strength was increased 56.8%. While when the polyamine as the synergetic agent for IGE, the tearing strength was significantly increased 87.9%. While IGE and IGE-PA were used in fatliquoring process, it has significant reinforcement effect for tetrakis hydroxymethyl phosphonium (THP) salt tanned leather. It was found that under the optimized conditions (Dosage: 2.5%, pH: 7-8, Temperature: 50℃, Time: 2h) with IGE in fatliquoring process, the tear strength was increased 50.24%, while the IGE-PA was used, the tear strength was increased 64.3%. Furthermore, TGA results showed that decomposition temperatures of IGE and IGE-PA enhanced leather were all higher than traditional chromium tanned leather. In addition, SEM results showed that IGE and IGE-PA enhanced leather obtained better opened-up fiber structure.
Take-Away:
1. A new type of multi-epoxy tanning agent (IGE) has reinforcement effect for sheep leather especially in tear strength.
2. IGE with the synergistic effect of polyamine (IGE-PA) were used in tanning process, which has a significant enhancement for the sheep leather.
3. IGE and IGE-PA can be also used in fatliquoring process to enhance the strength of sheep leather
Emerging applications of nanotechnology for diagnosis and therapy of disease: a review
Nanotechnology is of increasing interest in the fields of medicine and physiology over recent years. Its application could considerably improve disease detection and therapy, and although the potential is considerable, there are still many challenges, which need to be addressed before it is accepted in routine clinical use. This review focuses on emerging applications that nanotechnology could enhance or provide new approaches in diagnoses and therapy. The main focus of recent research centres on targeted therapies and enhancing imaging; however, the introduction of nanomaterial into the human body must be controlled, as there are many issues with possible toxicity and long-term effects. Despite these issues, the potential for nanotechnology to provide new methods of combating cancer and other disease conditions is considerable. There are still key challenges for researchers in this field, including the means of delivery and targetting in the body to provide effective treatment for specific disease conditions. Nanoparticles are difficult to measure due to the size and physical properties; hence there is still a great need to improve physiological measurements method in the field to ascertain how effective their use is in the human subject. This review is a brief snapshot into the fast changing research field of measurement and physiological links to nanoparticle use and its potential in the future
Meta-analysis on the association of VEGFR1 genetic variants with sunitinib outcome in metastatic renal cell carcinoma patients
VEGFR1 rs9582036 and rs9554320 were previously reported the association with sunitinib progression-free survival (PFS) and overall survival (OS) in patients with metastatic renal cell carcinoma (mRCC). Hereafter, the association of both single nucleotide polymorphisms (SNPs) with PFS/OS was confirmed in two independent mRCC cohorts. The aim of the current study was to validate the associations of both SNPs with sunitinib outcome in three independent well-characterized cohorts (SUTOX, CCF and SOGUG) including 286 sunitinib-treated mRCC patients, as well as to perform a meta-analysis of current and published data combined. We found that rs9582036 and rs9554320 showed a significant association with sunitinib PFS in the CCF cohort (HR: 0.254, 95%CI: 0.092-0.703; P=0.008 and HR: 0.430, 95%CI: 0.200- 0.927
Association of single nucleotide polymorphisms in IL8 and IL13 with sunitinib-induced toxicity in patients with metastatic renal cell carcinoma
Purpose: Earlier, the association of single nucleotide polymorphisms (SNPs) with toxicity and efficacy of sunitinib has been explored in patients with metastatic renal cel
High-Throughput Functional MicroRNAs Profiling by Recombinant AAV-Based MicroRNA Sensor Arrays
BACKGROUND: microRNAs (miRNAs) are small and non-coding RNAs which play critical roles in physiological and pathological processes. A number of methods have been established to detect and quantify miRNA expression. However, method for high-throughput miRNA function detection is still lacking. PRINCIPAL FINDINGS: We describe an adeno-associated virus (AAV) vector-based microRNA (miRNA) sensor (Asensor) array for high-throughput functional miRNA profiling. Each Asensor contains a Gaussia luciferase (Gluc) and a firefly luciferase (Fluc) expression cassette to sense functional miRNA and to serve as an internal control respectively. Using this array, we acquired functional profiles of 115 miRNAs for 12 cell lines and found "functional miRNA signatures" for several specific cell lines. The activities of specific miRNAs including the let-7 family, miR-17-92 cluster, miR-221, and miR-222 in HEK 293 cells were compared with their expression levels determined by quantitative reverse transcriptase polymerase chain reaction (QRT-PCR). We also demonstrate two other practical applications of the array, including a comparison of the miRNA activity between HEK293 and HEK293T cells and the ability to monitor miRNA activity changes in K562 cells treated with 12-O-tetradecanoylphorbol-13-acetate (TPA). CONCLUSIONS/SIGNIFICANCE: Our approach has potential applications in the identification of cell types, the characterization of biological and pathological processes, and the evaluation of responses to interventions
Inhibition of HIV virus by neutralizing Vhh attached to dual functional liposomes encapsulating dapivirine
Although highly active antiretroviral therapy (HAART) has greatly improved the life expectancy of HIV/AIDS patients, the treatment is not curative. It is a global challenge which fosters an urgent need to develop an effective drug or neutralizing antibody delivery approach for the prevention and treatment of this disease. Due to the low density of envelope spikes with restricted mobility present on the surface of HIV virus, which limit the antibody potency and allow virus mutation and escape from the immune system, it is important for a neutralizing antibody to form bivalent or multivalent bonds with the virus. Liposome constructs could fulfil this need due to the flexible mobility of the membrane with its attached antibodies and the capacity for drug encapsulation. In this study, we evaluated the neutralization activity of a range of liposome formulations in different sizes coated with anti-gp120 llama antibody fragments (Vhhs) conjugated via either non-covalent metal chelation or a covalent linkage. The non-covalent construct demonstrated identical binding affinity to HIV-1 envelope glycoprotein gp120 and neutralizing ability for HIV virus as free Vhh. Although covalently linked Vhh showed significant binding affinity to gp120, it unexpectedly had a lower neutralization potency. This may be due to the comparability in size of the viral and liposome particles restricting the number which can be bound to the liposome surface so involving only a fraction of the antibodies, whereas non-covalently attached antibodies dissociate from the surface after acting with gp120 and free the remainder to bind further viruses. Covalently conjugated Vhh might also trigger the cellular uptake of a liposome-virion complex. To explore the possible ability of the antibody-coated liposomes to have a further function, we encapsulated the hydrophobic antiviral drug dapivirine into both of the non-covalently and covalently conjugated liposome formulations, both of which revealed high efficacy in reducing viral replication in vitro. Thus, dual function liposomes may lead to a novel strategy for the prophylaxis of HIV/AIDS by combining the neutralizing activity of Vhh with antiviral effects of high drug concentrations
- …