27 research outputs found

    Healthy lifestyle and life expectancy free of cancer, cardiovascular disease, and type 2 diabetes: prospective cohort study

    Get PDF
    OBJECTIVE: To examine how a healthy lifestyle is related to life expectancy that is free from major chronic diseases. DESIGN: Prospective cohort study. SETTING AND PARTICIPANTS: The Nurses' Health Study (1980-2014; n=73 196) and the Health Professionals Follow-Up Study (1986-2014; n=38 366). MAIN EXPOSURES: Five low risk lifestyle factors: never smoking, body mass index 18.5-24.9, moderate to vigorous physical activity (≥30 minutes/day), moderate alcohol intake (women: 5-15 g/day; men 5-30 g/day), and a higher diet quality score (upper 40%). MAIN OUTCOME: Life expectancy free of diabetes, cardiovascular diseases, and cancer. RESULTS: The life expectancy free of diabetes, cardiovascular diseases, and cancer at age 50 was 23.7 years (95% confidence interval 22.6 to 24.7) for women who adopted no low risk lifestyle factors, in contrast to 34.4 years (33.1 to 35.5) for women who adopted four or five low risk factors. At age 50, the life expectancy free of any of these chronic diseases was 23.5 (22.3 to 24.7) years among men who adopted no low risk lifestyle factors and 31.1 (29.5 to 32.5) years in men who adopted four or five low risk lifestyle factors. For current male smokers who smoked heavily (≥15 cigarettes/day) or obese men and women (body mass index ≥30), their disease-free life expectancies accounted for the lowest proportion (≤75%) of total life expectancy at age 50. CONCLUSION: Adherence to a healthy lifestyle at mid-life is associated with a longer life expectancy free of major chronic diseases

    The trans-ancestral genomic architecture of glycemic traits

    Get PDF
    Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 x 10(-8)), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution. A trans-ancestry meta-analysis of GWAS of glycemic traits in up to 281,416 individuals identifies 99 novel loci, of which one quarter was found due to the multi-ancestry approach, which also improves fine-mapping of credible variant sets.Peer reviewe

    Common variants in SOX-2 and congenital cataract genes contribute to age-related nuclear cataract

    Get PDF
    Nuclear cataract is the most common type of age-related cataract and a leading cause of blindness worldwide. Age-related nuclear cataract is heritable (h2 = 0.48), but little is known about specific genetic factors underlying this condition. Here we report findings from the largest to date multi-ethnic meta-analysis of genome-wide association studies (discovery cohort N = 14,151 and replication N = 5299) of the International Cataract Genetics Consortium. We confirmed the known genetic association of CRYAA (rs7278468, P = 2.8 × 10−16) with nuclear cataract and identified five new loci associated with this disease: SOX2-OT (rs9842371, P = 1.7 × 1

    Electronic Structure of a Graphene-like Artificial Crystal of NdNiO3

    No full text
    Artificial complex-oxide heterostructures containing ultrathin buried layers grown along the pseudocubic [111] direction have been predicted to host a plethora of exotic quantum states arising from the graphene-like lattice geometry and the interplay between strong electronic correlations and band topology. To date, however, electronic-structural investigations of such atomic layers remain an immense challenge due to the shortcomings of conventional surface-sensitive probes with typical information depths of a few angstroms. Here, we use a combination of bulk-sensitive soft X-ray angle-resolved photoelectron spectroscopy (SX-ARPES), hard X-ray photoelectron spectroscopy (HAXPES), and state-of-the-art first-principles calculations to demonstrate a direct and robust method for extracting momentum-resolved and angle-integrated valence-band electronic structure of an ultrathin buckled graphene-like layer of NdNiO3 confined between two 4-unit cell-thick layers of insulating LaAlO3. The momentum-resolved dispersion of the buried Ni d states near the Fermi level obtained via SX-ARPES is in excellent agreement with the first-principles calculations and establishes the realization of an antiferro-orbital order in this artificial lattice. The HAXPES measurements reveal the presence of a valence-band bandgap of 265 meV. Our findings open a promising avenue for designing and investigating quantum states of matter with exotic order and topology in a few buried layers
    corecore