113 research outputs found

    Earnings Management for Second-time IPOs: Evidence from China

    Get PDF
    In China’s IPO market, firms that fail in their first IPO application make considerable adjustments before making their second IPO application. Examining firms that applied for IPOs during 2004-2018, we find that failed IPO applicant firms “package” themselves to obtain approval of the China Securities Regulatory Commission (CSRC) by reducing accrual earnings management and increasing real earnings management. In addition, after a successful second IPO application, these firms relax their vigilance vis-à-vis the CSRC and increase both accrual and real earnings management. This pre-IPO “packaging” behavior deceives investors, leading to higher IPO prices and higher post-IPO returns

    Genetically predicted serum testosterone and risk of gynecological disorders: a Mendelian randomization study

    Get PDF
    BackgroundTestosterone plays a key role in women, but the associations of serum testosterone level with gynecological disorders risk are inconclusive in observational studies.MethodsWe leveraged public genome-wide association studies to analyze the effects of four testosterone related exposure factors on nine gynecological diseases. Causal estimates were calculated by inverse variance–weighted (IVW), MR–Egger and weighted median methods. The heterogeneity test was performed on the obtained data through Cochrane’s Q value, and the horizontal pleiotropy test was performed on the data through MR–Egger intercept and MR-PRESSO methods. “mRnd” online analysis tool was used to evaluate the statistical power of MR estimates.ResultsThe results showed that total testosterone and bioavailable testosterone were protective factors for ovarian cancer (odds ratio (OR) = 0.885, P = 0.012; OR = 0.871, P = 0.005) and endometriosis (OR = 0.805, P = 0.020; OR = 0.842, P = 0.028) but were risk factors for endometrial cancer (OR = 1.549, P < 0.001; OR = 1.499, P < 0.001) and polycystic ovary syndrome (PCOS) (OR = 1.606, P = 0.019; OR = 1.637, P = 0.017). dehydroepiandrosterone sulfate (DHEAS) is a protective factor against endometriosis (OR = 0.840, P = 0.016) and premature ovarian failure (POF) (OR = 0.461, P = 0.046) and a risk factor for endometrial cancer (OR= 1.788, P < 0.001) and PCOS (OR= 1.970, P = 0.014). sex hormone-binding globulin (SHBG) is a protective factor against endometrial cancer (OR = 0.823, P < 0.001) and PCOS (OR = 0.715, P = 0.031).ConclusionOur analysis suggested causal associations between serum testosterone level and ovarian cancer, endometrial cancer, endometriosis, PCOS, POF

    Numerical Study on the Influence of Different Waving Bottom Form on the Fluid Surface Wave

    Get PDF
    Abstract: In the present study, the effect of waving bottom on the surface wave is studied. Basing on the fundamental equations of potential flow theory and boundary conditions, using the multiple scales perturbation method to derive the first-order and the second-order approximate equation which the fluid surface waves satisfied in the presence of waving bottom. Under the second-order approximation, the fluid surface waveform in first-order approximate equation is numerically simulated with MATLAB in the presence of different waving bottom form. The results show that: the fluid surface waveform is composed of a harmonic wave which has the same frequency with waving bottom and a pair of KdV solitary waves that spread to both the right and the left side when the waving bottom wave is a harmonic wave; and when the waving bottom is a solitary wave packet, it consists of a solitary wave which is closely related to the specific form of waving bottom and a couple of KdV solitary waves. With the development of time, three waves in fluid surface do not affect each other and they propagate independently. Thus it can be seen the waving bottom is effective for maintaining surface wave energy balance income and expenditure in the spreading process

    Study on the significance and mechanism of ASGR1 in hepatocellular carcinoma

    Get PDF
    Objective·To explore the significance and mechanism of asialoglycoprotein receptor 1 (ASGR1) in hepatocellular carcinoma.Methods·The expression of ASGR1 in patients with liver cancer in The Cancer Genome Atlas (TCGA) database was analyzed by R language and the related survival curves were drawn. The Human Protein Atlas (HPA) database was used to obtain the immunohistochemistry (IHC) data of normal human liver tissue and liver cancer tissue to analyze the protein expression of ASGR1. By using the hydrodynamic tail vein injection (HTVI) delivery method, Asgr1 was knocked out in the liver of fully immune mice to explore its tumorigenic function in vivo. Gene knockout efficiency was verified by Western blotting (WB). The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and correlation analysis were performed by using R language. The GSEA hallmark correlation pathway analysis was performed by using Gene Set Enrichment Analysis (GSEA) software. The expression level of key genes of glycolysis in mouse liver cancer tissue was verified by quantitative real-time PCR (qPCR).Results·ASGR1 was significantly low-expressed in liver cancer tissue, and the low expression of ASGR1 in liver cancer patients was associated with poorer overall survival (OS), disease-free interval (DFI), progression-free interval (PFI), and disease-specific survival (DSS). The higher the degree of tumor grade, the lower the expression level of ASGR1 in patients with liver cancer. Immunohistochemistry showed that the protein expression of ASGR1 in normal human liver tissue was significantly higher than that in liver cancer tissue. In an immunocompetent mouse model of hepatocellular carcinoma, knockout of endogenous Asgr1 in mice increased the size and number of tumor nodules in liver tissue. In the TCGA database, patients with liver cancer in the ASGR1 low-expression group were enriched in multiple cancer and metabolic pathways. The expression of ASGR1 was negatively correlated with some key genes of glycolysis. The level of glycolysis in liver cancer tissues of mice in the Asgr1 knockout group was higher than that in the control group. It was suggested that the low expression of ASGR1 be likely to promote the growth and development of liver cancer and strengthen metabolic reprogramming to promote the anabolic development of tumors.Conclusion·The expression of ASGR1 is significantly reduced in patients with liver cancer, which is positively correlated with the prognosis of patients. Knocking out Asgr1 in mice can promote the occurrence and development of hepatocellular carcinoma. ASGR1 can be used as a potential biomarker for poor prognosis of liver cancer and a new target for potential treatment

    A model for Escherichia coli chromosome packaging supports transcription factor-induced DNA domain formation

    Get PDF
    What physical mechanism leads to organization of a highly condensed and confined circular chromosome? Computational modeling shows that confinement-induced organization is able to overcome the chromosome's propensity to mix by the formation of topological domains. The experimentally observed high precision of separate subcellular positioning of loci (located on different chromosomal domains) in Escherichia coli naturally emerges as a result of entropic demixing of such chromosomal loops. We propose one possible mechanism for organizing these domains: regulatory control defined by the underlying E. coli gene regulatory network requires the colocalization of transcription factor genes and target genes. Investigating this assumption, we find the DNA chain to self-organize into several topologically distinguishable domains where the interplay between the entropic repulsion of chromosomal loops and their compression due to the confining geometry induces an effective nucleoid filament-type of structure. Thus, we propose that the physical structure of the chromosome is a direct result of regulatory interactions. To reproduce the observed precise ordering of the chromosome, we estimate that the domain sizes are distributed between 10 and 700 kb, in agreement with the size of topological domains identified in the context of DNA supercoiling

    Durvalumab Plus Carboplatin/Paclitaxel Followed by Maintenance Durvalumab With or Without Olaparib as First-Line Treatment for Advanced Endometrial Cancer: The Phase III DUO-E Trial

    Full text link
    PURPOSE Immunotherapy and chemotherapy combinations have shown activity in endometrial cancer, with greater benefit in mismatch repair (MMR)-deficient (dMMR) than MMR-proficient (pMMR) disease. Adding a poly(ADP-ribose) polymerase inhibitor may improve outcomes, especially in pMMR disease. METHODS This phase III, global, double-blind, placebo-controlled trial randomly assigned eligible patients with newly diagnosed advanced or recurrent endometrial cancer 1:1:1 to: carboplatin/paclitaxel plus durvalumab placebo followed by placebo maintenance (control arm); carboplatin/paclitaxel plus durvalumab followed by maintenance durvalumab plus olaparib placebo (durvalumab arm); or carboplatin/paclitaxel plus durvalumab followed by maintenance durvalumab plus olaparib (durvalumab + olaparib arm). The primary end points were progression-free survival (PFS) in the durvalumab arm versus control and the durvalumab + olaparib arm versus control. RESULTS Seven hundred eighteen patients were randomly assigned. In the intention-to-treat population, statistically significant PFS benefit was observed in the durvalumab (hazard ratio [HR], 0.71 [95% CI, 0.57 to 0.89]; P = .003) and durvalumab + olaparib arms (HR, 0.55 [95% CI, 0.43 to 0.69]; P < .0001) versus control. Prespecified, exploratory subgroup analyses showed PFS benefit in dMMR (HR [durvalumab v control], 0.42 [95% CI, 0.22 to 0.80]; HR [durvalumab + olaparib v control], 0.41 [95% CI, 0.21 to 0.75]) and pMMR subgroups (HR [durvalumab v control], 0.77 [95% CI, 0.60 to 0.97]; HR [durvalumab + olaparib v control] 0.57; [95% CI, 0.44 to 0.73]); and in PD-L1-positive subgroups (HR [durvalumab v control], 0.63 [95% CI, 0.48 to 0.83]; HR [durvalumab + olaparib v control], 0.42 [95% CI, 0.31 to 0.57]). Interim overall survival results (maturity approximately 28%) were supportive of the primary outcomes (durvalumab v control: HR, 0.77 [95% CI, 0.56 to 1.07]; P = .120; durvalumab + olaparib v control: HR, 0.59 [95% CI, 0.42 to 0.83]; P = .003). The safety profiles of the experimental arms were generally consistent with individual agents. CONCLUSION Carboplatin/paclitaxel plus durvalumab followed by maintenance durvalumab with or without olaparib demonstrated a statistically significant and clinically meaningful PFS benefit in patients with advanced or recurrent endometrial cancer

    Intelligent Prediction of Fan Rotation Stall in Power Plants Based on Pressure Sensor Data Measured In-Situ

    No full text
    Blower and exhaust fans consume over 30% of electricity in a thermal power plant, and faults of these fans due to rotation stalls are one of the most frequent reasons for power plant outage failures. To accurately predict the occurrence of fan rotation stalls, we propose a support vector regression machine (SVRM) model that predicts the fan internal pressures during operation, leaving ample time for rotation stall detection. We train the SVRM model using experimental data samples, and perform pressure data prediction using the trained SVRM model. To prove the feasibility of using the SVRM model for rotation stall prediction, we further process the predicted pressure data via wavelet-transform-based stall detection. By comparison of the detection results from the predicted and measured pressure data, we demonstrate that the SVRM model can accurately predict the fan pressure and guarantee reliable stall detection with a time advance of up to 0.0625 s. This superior pressure data prediction capability leaves significant time for effective control and prevention of fan rotation stall faults. This model has great potential for use in intelligent fan systems with stall prevention capability, which will ensure safe operation and improve the energy efficiency of power plants

    Reply

    No full text

    The Impact of Shareholder and Director Networks on Corporate Technological Innovation: A Multilayer Networks Analysis

    No full text
    We adopt a multilayer networks approach to assess how network structural embeddedness affects corporate technological innovation. Our findings indicate an annual increase in both single-layer and multilayer networks, although adoption of the latter by Chinese listed companies is comparatively low. We found that structural embeddedness of multilayer networks positively impacts corporate technological innovation. By reducing uncertainty within the internal environment, these networks bolster technological innovation. Moreover, such embeddedness notably spurs innovation in non-state-owned companies and those with greater internal transparency and robust external oversight. Our analysis reveals an intermediate effect where structural embeddedness in multilayer networks influences innovation. Our work provides new insights into enhancing innovation capacity via network embeddedness and supplies empirical data on utilizing network resources for innovation. We also offer actionable guidance and policy advice for managers, investors, and policymakers, especially relevant amidst economic transformation and pursuit of technological self-reliance of China

    Structure Inheritance in Nanoparticle Ink Direct-Writing Processes and Crack-Free Nano-Copper Interconnects Printed by a Single-Run Approach

    No full text
    When nanoparticle conductive ink is used for printing interconnects, cracks and pores are common defects that deteriorate the electrical conductivity of the printed circuits. Influences of the ink solvent, the solid fraction of the ink, the pre-printing treatment and the sintering parameters on the interconnect morphology and conductivity were investigated. It was found that the impacts of all these factors coupled with each other throughout the whole procedure, from the pre-printing to the post-printing processes, and led to a structure inheritance effect. An optimum process route was developed for producing crack-free interconnects by a single-run direct-writing approach using home-made nano-copper ink. A weak gel was promoted in the ink before printing in the presence of long-chain polymers and bridging molecules by mechanical agitation. The fully developed gel network prevented the phase separation during ink extrusion and crack formations during drying. With the reducing agents in the ink and slow evaporation of the ink solvent, compact packing and neck joining of copper nanoparticles were obtained after a two-step sintering process. The crack-free interconnects successfully produced have a surface roughness smaller than 1.5 &#956;m and the square resistances as low as 0.01 &#937;/□
    corecore