16,919 research outputs found

    Momentum-resolved radio-frequency spectroscopy of a spin-orbit coupled atomic Fermi gas near a Feshbach resonance in harmonic traps

    Full text link
    We theoretically investigate the momentum-resolved radio-frequency spectroscopy of a harmonically trapped atomic Fermi gas near a Feshbach resonance in the presence of equal Rashba and Dresselhaus spin-orbit coupling. The system is qualitatively modeled as an ideal gas mixture of atoms and molecules, in which the properties of molecules, such as the wavefunction, binding energy and effective mass, are determined from the two-particle solution of two-interacting atoms. We calculate separately the radio-frequency response from atoms and molecules at finite temperatures by using the standard Fermi golden rule, and take into account the effect of harmonic traps within local density approximation. The total radio-frequency spectroscopy is discussed, as functions of temperature and spin-orbit coupling strength. Our results give a qualitative picture of radio-frequency spectroscopy of a resonantly interacting spin-orbit coupled Fermi gas and can be directly tested in atomic Fermi gases of K40 atoms at Shanxi University and of Li6 atoms at MIT.Comment: 11 pages, 9 Figure

    Two-channel model description of confinement-induced Feshbach molecules

    Full text link
    Using a two-channel model, we investigate theoretically the binding energy of confinement-induced Feshbach molecules in two- and one-dimensional ultracold atomic systems, near a Feshbach resonance. We show that the two-channel prediction will evidently deviate from the simple single-channel theory as the width of Feshbach resonances decreases. For one-dimensional system, we perform a full two-channel calculation, with the inclusion of bare interatomic interactions in the open channel. Away from the resonance, we find a sizable correction to the binding energy, if we neglect incorrectly the bare interatomic interactions as in the previous work [Dickerscheid and Stoof, Phys. Rev. A 72, 053625 (2005)]. We compare our theoretical results with existing experimental data and present predictions for narrow Feshbach resonances that could be tested in future experiments.Comment: 8 pages, 5 figure

    Radio-frequency spectroscopy of weakly bound molecules in spin-orbit coupled atomic Fermi gases

    Full text link
    We investigate theoretically radio-frequency spectroscopy of weakly bound molecules in an ultracold spin-orbit-coupled atomic Fermi gas. We consider two cases with either equal Rashba and Dresselhaus coupling or pure Rashba coupling. The former system has been realized very recently at Shanxi University [Wang et al., arXiv:1204.1887] and MIT [Cheuk et al., arXiv:1205.3483]. We predict realistic radio-frequency signals for revealing the unique properties of anisotropic molecules formed by spin-orbit coupling.Comment: 11 pages, 7 figure

    Confinement-induced resonance in quasi-one-dimensional systems under transversely anisotropic confinement

    Full text link
    We theoretically investigate the confinement-induced resonance for quasi-one-dimensional quan- tum systems under transversely anisotropic confinement, using a two-body s-wave scattering model in the zero-energy collision limit. We predict a single resonance for any transverse anisotropy, whose position shows a slight downshift with increasing anisotropy. We compare our prediction with the recent experimental result by Haller et al. [Phys. Rev. Lett. 104, 153203 (2010)], in which two resonances are observed in the presence of transverse anisotropy. The discrepancy between theory and experiment remains to be resolved.Comment: 6 pages, 5 figures, accepted for publication in Phys. Rev.

    An electron acceptor molecule in a nanomesh: F4TCNQ on h-BN/Rh(111)

    Get PDF
    The adsorption of molecules on surfaces affects the surface dipole and thus changes in the work function may be expected. The effect in change of work function is particularly strong if charge between substrate and adsorbate is involved. Here we report the deposition of a strong electron acceptor molecule, tetrafluorotetracyanoquinodimethane C12_{12}F4_4N4_4 (F4_{4}TCNQ) on a monolayer of hexagonal boron nitride nanomesh (hh-BN on Rh(111)). The work function of the F4_{4}TCNQ/hh-BN/Rh system increases upon increasing molecular coverage. The magnitude of the effect indicates electron transfer from the substrate to the F4_{4}TCNQ molecules. Density functional theory calculations confirm the work function shift and predict doubly charged F4_{4}TCNQ2^{2-} in the nanomesh pores, where the hh-BN is closest to the Rh substrate, and to have the largest binding energy there. The preferred adsorption in the pores is conjectured from a series of ultraviolet photoelectron spectroscopy data, where the σ\sigma bands in the pores are first attenuated. Scanning tunneling microscopy measurements indicate that F4_{4}TCNQ molecules on the nanomesh are mobile at room temperature, as "hopping" between neighboring pores is observed

    Distributed state estimation for uncertain Markov-type sensor networks with mode-dependent distributed delays

    Get PDF
    This the post-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2012 John Wiley & Sons, Ltd.In this paper, the distributed state estimation problem is investigated for a class of sensor networks described by uncertain discrete-time dynamical systems with Markovian jumping parameters and distributed time-delays. The sensor network consists of sensor nodes characterized by a directed graph with a nonnegative adjacency matrix that specifies the interconnection topology (or the distribution in the space) of the network. Both the parameters of the target plant and the sensor measurements are subject to the switches from one mode to another at different times according to a Markov chain. The parameter uncertainties are norm-bounded that enter into both the plant system as well as the network outputs. Furthermore, the distributed time-delays are considered, which are also dependent on the Markovian jumping mode. Through the measurements from a small fraction of the sensors, this paper aims to design state estimators that allow the nodes of the sensor network to track the states of the plant in a distributed way. It is verified that such state estimators do exist if a set of matrix inequalities is solvable. A numerical example is provided to demonstrate the effectiveness of the designed distributed state estimators.This work was supported in part by the Royal Society of the U.K., the National Natural Science Foundation of China under Grants 60804028 and 61028008, the Specialized Research Fund for the Doctoral Program of Higher Education for New Teachers in China under Grant 200802861044, the Teaching and Research Fund for Excellent Young Teachers at Southeast University of China, the International Science and Technology Cooperation Project of China under Grant No. 2009DFA32050, and the Alexander von Humboldt Foundation of Germany

    SRDA-Net: Super-Resolution Domain Adaptation Networks for Semantic Segmentation

    Full text link
    Recently, Unsupervised Domain Adaptation was proposed to address the domain shift problem in semantic segmentation task, but it may perform poor when source and target domains belong to different resolutions. In this work, we design a novel end-to-end semantic segmentation network, Super-Resolution Domain Adaptation Network (SRDA-Net), which could simultaneously complete super-resolution and domain adaptation. Such characteristics exactly meet the requirement of semantic segmentation for remote sensing images which usually involve various resolutions. Generally, SRDA-Net includes three deep neural networks: a Super-Resolution and Segmentation (SRS) model focuses on recovering high-resolution image and predicting segmentation map; a pixel-level domain classifier (PDC) tries to distinguish the images from which domains; and output-space domain classifier (ODC) discriminates pixel label distributions from which domains. PDC and ODC are considered as the discriminators, and SRS is treated as the generator. By the adversarial learning, SRS tries to align the source with target domains on pixel-level visual appearance and output-space. Experiments are conducted on the two remote sensing datasets with different resolutions. SRDA-Net performs favorably against the state-of-the-art methods in terms of accuracy and visual quality. Code and models are available at https://github.com/tangzhenjie/SRDA-Net
    corecore