5,175 research outputs found

    Planar polymer waveguides with a graded-index profile resulting from intermixing of methacrylates in closed microchannels

    Get PDF
    Graded-index waveguides are known to exhibit lower losses and considerably larger bandwidths compared to step-index waveguides. The present work reports on a new concept for realizing such waveguides on a planar substrate by capillary filling microchannels (cladding) with monomer solution (core). A graded-index profile is obtained by intermi xing between the core and cladding material at the microchannel interface. To this end, various ratios of methyl methacrylate (MMA) and octafluoropentyl methacrylate (OFPMA) were evaluated as starting monomers and the results showed that the polymers P50:50 (50:50 MMA:OFPMA) and P0:100 (100% OFPMA) were suitable to be applied as waveguide core and cladding material respectively. Light guiding in the resulting P50:50/P0:100 waveguides was demonstrated and the refractive-index profile was quantified and compared with that of conventional step-index waveguides. The results for both cases were clearly different and a gradual refractive index transition between the core and cladding was found for the newly developed waveguides. Although the concept has been demonstrated in a research environment, it also has potential for upscaling by employing drop-on-demand dispensing of polymer waveguide material in pre-patterned microchannels, for example in a roll-to-roll environment

    Transactivation of PDGFRβ by dopamine D4 receptor does not require PDGFRβ dimerization

    Get PDF
    Growth factor-induced receptor dimerization and cross-phosphorylation are hallmarks of signal transduction via receptor tyrosine kinases (RTKs). G protein-coupled receptors (GPCRs) can activate RTKs through a process known as transactivation. The prototypical model of RTK transactivation involves ligand-mediated RTK dimerization and cross-phosphorylation. Here, we show that the platelet-derived growth factor receptor β (PDGFRβ) transactivation by the dopamine receptor D4 (DRD4) is not dependent on ligands for PDGFRβ. Furthermore, when PDGFRβ dimerization is inhibited and receptor phosphorylation is suppressed to near basal levels, the receptor maintains its ability to be transactivated and is still effective in signaling to ERK1/2. Hence, the DRD4-PDGFRβ-ERK1/2 pathway can occur independently of a PDGF-like ligand, PDGFRβ cross-phosphorylation and dimerization, which is distinct from other known forms of transactivation of RTKs by GPCRs

    Increased central auditory gain and decreased parvalbumin-positive cortical interneuron density in the Df1/+ mouse model of schizophrenia correlate with hearing impairment

    Get PDF
    Background Hearing impairment is a risk factor for schizophrenia. Patients with 22q11.2 Deletion Syndrome (22q11.2DS) have a 25-30% risk of schizophrenia, and up to 60% also have varying degrees of hearing impairment, primarily from middle ear inflammation. The Df1/+ mouse model of 22q11.2DS recapitulates many features of the human syndrome, including schizophrenia-relevant brain abnormalities and high inter-individual variation in hearing ability. However, the relationship between brain abnormalities and hearing impairment in Df1/+ mice has not been examined. Methods We measured auditory brainstem responses (ABRs), cortical auditory evoked potentials, and/or cortical parvalbumin-positive (PV+) interneuron density in over 70 adult mice (32 Df1/+, 39 wild-type). We also performed longitudinal ABR measurements in an additional 20 animals (13 Df1/+, 7 wild-type) from 3 weeks of age. Results Electrophysiological markers of central auditory excitability were elevated in Df1/+ mice. PV+ interneurons, which are implicated in schizophrenia pathology, were reduced in density in auditory cortex but not secondary motor cortex. Both auditory brain abnormalities correlated with hearing impairment, which affected approximately 60% of adult Df1/+ mice and typically emerged before 6 weeks of age. Conclusions In the Df1/+ mouse model of 22q11.2DS, abnormalities in central auditory excitability and auditory cortical PV+ immunoreactivity correlate with hearing impairment. This is the first demonstration of cortical PV+ interneuron abnormalities correlating with hearing impairment in a mouse model of either schizophrenia or middle ear inflammation

    Bulk and Interfacial Shear Thinning of Immiscible Polymers

    Full text link
    Nonequilibrium molecular dynamics simulations are used to study the shear thinning behavior of immiscible symmetric polymer blends. The phase separated polymers are subjected to a simple shear flow imposed by moving a wall parallel to the fluid-fluid interface. The viscosity begins to shear thin at much lower rates in the bulk than at the interface. The entire shear rate dependence of the interfacial viscosity is consistent with a shorter effective chain length ss^* that also describes the width of the interface. This ss^* is independent of chain length NN and is a function only of the degree of immiscibility of the two polymers. Changes in polymer conformation are studied as a function of position and shear rate.Shear thinning correlates more closely with a decrease in the component of the radius of gyration along the velocity gradient than with elongation along the flow. At the interface, this contraction of chains is independent of NN and consistent with the bulk behavior for chains of length ss^*. The distribution of conformational changes along chains is also studied. Central regions begin to stretch at a shear rate that decreases with increasing NN, while shear induced changes at the ends of chains are independent of NN.Comment: 8 pages, 8 figure

    Knock-out of SO1377 gene, which encodes the member of a conserved hypothetical bacterial protein family COG2268, results in alteration of iron metabolism, increased spontaneous mutation and hydrogen peroxide sensitivity in Shewanella oneidensis MR-1

    Get PDF
    BACKGROUND: Shewanella oneidensis MR-1 is a facultative, gram-negative bacterium capable of coupling the oxidation of organic carbon to a wide range of electron acceptors such as oxygen, nitrate and metals, and has potential for bioremediation of heavy metal contaminated sites. The complete 5-Mb genome of S. oneidensis MR-1 was sequenced and standard sequence-comparison methods revealed approximately 42% of the MR-1 genome encodes proteins of unknown function. Defining the functions of hypothetical proteins is a great challenge and may need a systems approach. In this study, by using integrated approaches including whole genomic microarray and proteomics, we examined knockout effects of the gene encoding SO1377 (gi24372955), a member of the conserved, hypothetical, bacterial protein family COG2268 (Clusters of Orthologous Group) in bacterium Shewanella oneidensis MR-1, under various physiological conditions. RESULTS: Compared with the wild-type strain, growth assays showed that the deletion mutant had a decreased growth rate when cultured aerobically, but not affected under anaerobic conditions. Whole-genome expression (RNA and protein) profiles revealed numerous gene and protein expression changes relative to the wild-type control, including some involved in iron metabolism, oxidative damage protection and respiratory electron transfer, e. g. complex IV of the respiration chain. Although total intracellular iron levels remained unchanged, whole-cell electron paramagnetic resonance (EPR) demonstrated that the level of free iron in mutant cells was 3 times less than that of the wild-type strain. Siderophore excretion in the mutant also decreased in iron-depleted medium. The mutant was more sensitive to hydrogen peroxide and gave rise to 100 times more colonies resistant to gentamicin or kanamycin. CONCLUSION: Our results showed that the knock-out of SO1377 gene had pleiotropic effects and suggested that SO1377 may play a role in iron homeostasis and oxidative damage protection in S. oneidensis MR-1

    Disruption of TNFα/TNFR1 function in resident skin cells impairs host immune response against cutaneous vaccinia virus infection

    Get PDF
    One strategy adopted by vaccinia virus (VV) to evade the host immune system is to encode homologs of TNF receptors (TNFR) that block TNFα function. The response to VV skin infection under conditions of TNFα deficiency, however, has not been reported. We found that TNFR1−/− mice developed larger primary lesions, numerous satellite lesions and higher skin virus levels after VV scarification. Following their recovery, these TNFR1−/− mice were fully protected against challenge with a lethal intranasal dose of VV, suggesting these mice developed an effective memory immune response. A functional systemic immune response of TNFR1−/− mice was further demonstrated by enhanced production of VV-specific IFNγ and VV-specific CD8+ T cells in spleens and draining lymph nodes. Interestingly, bone marrow (BM) reconstitution studies using WT BM in TNFR1−/− host mice, but not TNFR1−/− BM in WT host mice, reproduced the original results seen in TNFR1−/− mice, indicating that TNFR1 deficiency in resident skin cells, rather than hematopoietic cells, accounts for the impaired cutaneous immune response. Our data suggest that lack of TNFR1 leads to a skin-specific immune deficiency and that resident skin cells play a crucial role in mediating an optimal immune defense to VV cutaneous infection via TNFα/TNFR1 signaling

    Dependence receptor UNC5A restricts luminal to basal breast cancer plasticity and metastasis

    Get PDF
    BACKGROUND: The majority of estrogen receptor-positive (ERα+) breast cancers respond to endocrine therapies. However, resistance to endocrine therapies is common in 30% of cases, which may be due to altered ERα signaling and/or enhanced plasticity of cancer cells leading to breast cancer subtype conversion. The mechanisms leading to enhanced plasticity of ERα-positive cancer cells are unknown. METHODS: We used short hairpin (sh)RNA and/or the CRISPR/Cas9 system to knockdown the expression of the dependence receptor UNC5A in ERα+ MCF7 and T-47D cell lines. RNA-seq, quantitative reverse transcription polymerase chain reaction, chromatin immunoprecipitation, and Western blotting were used to measure the effect of UNC5A knockdown on basal and estradiol (E2)-regulated gene expression. Mammosphere assay, flow cytometry, and immunofluorescence were used to determine the role of UNC5A in restricting plasticity. Xenograft models were used to measure the effect of UNC5A knockdown on tumor growth and metastasis. Tissue microarray and immunohistochemistry were utilized to determine the prognostic value of UNC5A in breast cancer. Log-rank test, one-way, and two-way analysis of variance (ANOVA) were used for statistical analyses. RESULTS: Knockdown of the E2-inducible UNC5A resulted in altered basal gene expression affecting plasma membrane integrity and ERα signaling, as evident from ligand-independent activity of ERα, altered turnover of phosphorylated ERα, unique E2-dependent expression of genes effecting histone demethylase activity, enhanced upregulation of E2-inducible genes such as BCL2, and E2-independent tumorigenesis accompanied by multiorgan metastases. UNC5A depletion led to the appearance of a luminal/basal hybrid phenotype supported by elevated expression of basal/stem cell-enriched ∆Np63, CD44, CD49f, epidermal growth factor receptor (EGFR), and the lymphatic vessel permeability factor NTN4, but lower expression of luminal/alveolar differentiation-associated ELF5 while maintaining functional ERα. In addition, UNC5A-depleted cells acquired bipotent luminal progenitor characteristics based on KRT14+/KRT19+ and CD49f+/EpCAM+ phenotype. Consistent with in vitro results, UNC5A expression negatively correlated with EGFR expression in breast tumors, and lower expression of UNC5A, particularly in ERα+/PR+/HER2- tumors, was associated with poor outcome. CONCLUSION: These studies reveal an unexpected role of the axon guidance receptor UNC5A in fine-tuning ERα and EGFR signaling and the luminal progenitor status of hormone-sensitive breast cancers. Furthermore, UNC5A knockdown cells provide an ideal model system to investigate metastasis of ERα+ breast cancers

    Macroscopic transport by synthetic molecular machines

    Get PDF
    Nature uses molecular motors and machines in virtually every significant biological process, but demonstrating that simpler artificial structures operating through the same gross mechanisms can be interfaced with—and perform physical tasks in—the macroscopic world represents a significant hurdle for molecular nanotechnology. Here we describe a wholly synthetic molecular system that converts an external energy source (light) into biased brownian motion to transport a macroscopic cargo and do measurable work. The millimetre-scale directional transport of a liquid on a surface is achieved by using the biased brownian motion of stimuli-responsive rotaxanes (‘molecular shuttles’) to expose or conceal fluoroalkane residues and thereby modify surface tension. The collective operation of a monolayer of the molecular shuttles is sufficient to power the movement of a microlitre droplet of diiodomethane up a twelve-degree incline.

    Impact of hospital characteristics on patients’ experience of hospital care: Evidence from 14 states, 2009-2011

    Get PDF
    This paper uses patient responses to the Hospital Consumer Assessment of Healthcare Providers and Systems (HCAHPS) survey for three years (2009-2011) from 1,333 acute-care hospitals in fourteen states to analyze patterns in 10 hospital-reported patient experience-of-care scores by 29 characteristics classified as: patient characteristics, payer source, patient severity, hospital characteristics, hospital operations, and market characteristics. We also evaluate how scores have changed over the three-year period. We find significant differences in patient experience-of-care scores by hospital characteristics for 250 out of 290 HCAHPS-hospital characteristic combinations measured. We find fewer significant differences in changes in scores from 2009-2011 (135 out of 290), with hospitals categorized as high scoring also reporting consistently greater improvement. We conclude that patient experience-of-care scores vary by hospital characteristics, although improvements in scores show less variety by hospital categorization
    corecore