20 research outputs found

    Transcriptional response of USP18 predicts treatment outcomes of interferon-alpha in HBeAg-positive chronic hepatitis B patientsefere.

    Get PDF
    Ubiquitin-specific protease 18 (USP18) is an important inhibitor of interferon (IFN) antiviral activity, and the aim of this study was to investigate the association between the USP18 mRNA level change in peripheral blood mononuclear cells (PBMCs) when stimulated with IFN in vitro before initiating treatment and the treatment outcomes in HBeAg-positive chronic hepatitis B (CHB) patients treated with IFN. A total of 44 patients who received standard IFN-based anti-HBV therapy and follow-up were enrolled in the study. The in vitro IFN-induced USP18 mRNA change (USP18IFN-N ) was measured via comparison of quantitative PCR-determined USP18 transcription levels of BPMCs cultured with and without IFN stimulation. Either for virological (VR) or serological response (SR), the baseline USP18IFN-N was significantly higher (P = 0.018 for VR, P = 0.008 for SR) among nonresponders (n = 23 for VR, n = 33 for SR) than that of responders (n = 21 for VR, n = 11 for SR). Multivariate analyses revealed baseline USP18IFN-N was a novel independent predictor for either VR (OR = 0.292, 95% CI = 0.102-0.835, P = 0.022) or SR (OR = 0.173, 95% CI = 0.035-0.849, P = 0.031) in our cohort. In addition, baseline USP18IFN-N in combination with HBV DNA loads or HBeAg levels showed improved accuracy of pretreatment prediction for VR or SR responders, respectively. Baseline USP18IFN-N levels are associated with both virological and serological response, and have the potential to become a clinical predictor for treatment outcomes in HBeAg-positive CHB patients before initiating IFN-α therapy

    Quantitative Analyses of Transition Pension Liabilities and Solvency Sustainability in China

    No full text
    In the context of the aging population, the debt risk and solvency situation of China’s pension plan are of major concern for government and individuals. The aim of this paper is to project public pension liabilities and evaluate the solvency sustainability of China’s pension reform during transition periods. By using cohort component and actuarial models, transition debt and solvency sustainability are projected under the existing policy scenario and several sets of hypothetical policy scenarios. We find that the transition liabilities will peak in 2035 and the pension plan will become unsustainable in 2048 under existing policies. In the proposed scenario, postponing retirement age helps to maintain pension plan sustainability until 2083, but this option can’t solve the financial distress in the long run. Further, the transition pension debt will double in the peak moment if the retirement age is postponed for five years, which would pose a risk to the liquidity of the fund. Moreover, an increase to invest return can only improve the baseline solvency in short term. Sustainable options should be designed as composite reform measures, including retirement and investment adjustment

    A Membrane Modified with Nitrogen-Doped TiO<sub>2</sub>/Graphene Oxide for Improved Photocatalytic Performance

    No full text
    An improved photocatalytic microfiltration membrane was successfully prepared by the impregnation method with nitrogen-doped TiO2/graphene oxide (GO) (NTG). By utilizing the unique role of N and GO, the photocatalytic activity of the membrane in UV and sunlight was improved. Compared with the Polyvinylidene Fluoride (PVDF) microfiltration membrane which was modified by TiO2, N-TiO2 (NT) and TiO2-GO (TG), the NTG/PVDF membrane exhibited high photocatalytic efficiency and significantly improved photodegradation power to the methylene blue (MB) solution under ultraviolet light and sunlight, with the photocatalytic efficiency reaching 86.5% and 80.6%, respectively. Scanning electron microscopy (SEM), X-ray diffractometry (XRD) and Fourier transform infrared spectroscopy (FT-IR) were used to analyze the morphology, crystal structure and chemical bonds of the membrane surface. The hydrophilicity of the modified PVDF microfiltration membrane was significantly improved, the flux of the pure water membrane reached 1672 Lm&#8722;2h&#8722;1, the flux of the MB solution was also significantly improved due to photodegradation. Therefore, the nitrogen-doped titanium dioxide graphene oxide PVDF microfiltration membrane (NTG/PVDF membrane) has great development prospects in sustainable water treatment

    Biomimetic growth of biomorphic CaCO3 with hierarchically ordered cellulosic structures

    No full text
    Biomorphic CaCO3 with different hierarchically ordered micro- and nanostructures was fabricated with natural cellulose substances as the host templates. The fabrication involves two mild sonication processes in which calcium and carbonate ions are sequentially added to the template, together with subsequent calcination in air. The specific pseudo-ID and pseudo-2D structures of the resultant crystalline calcite can be tailored by mimicking both natural and artificially woven cellulosic substances, with the former following the ribbon/tube form of cellulose fiber and the latter following the netlike architectures of the woven cotton cloth. The building block of these structures is a layer of CaCO3 grains grown on the surfaces of each cellulose fiber. By choosing Ca2+, CO3 2-, or HCO 3 - ions as the first adsorption species on the cellulose template, we show that the resultant CaCO3 grain size can be fine-tuned in a nanoscopic scale, most probably due to the differences in the nature of ion adsorption on the cellulose molecules and the resultant CaCO 3 nucleation and growth. The impact of this new route is that we can precisely predict the morphologies of the final CaCO3 products that were not realized in other chemical approaches. © 2007 American Chemical Society

    Amine or Azo functionalized hypercrosslinked polymers for highly efficient CO2 capture and selective CO2 capture

    No full text
    Hypercrosslinked polymers (HCPs) are very promising for large-scale applications due to their easy preparation, high thermal stability, and good capability of CO2 capture. Currently, many amine-functionalized porous materials are prepared through two steps. In this paper, the amine-functionalized HCPs was obtained with a one-step method and it showed a high CO2 adsorption up to 4.24 mmol/g at 273.15 K. In addition, since the azo-functionalized porous materials have many potential applications like the photoresponsive ‘smart’ materials, azobenzene is an attracting functional group for the development of porous materials. Herein, the azo-functionalized HCPs is firstly reported, and it is used as CO2 adsorbents (3.02 mmol/g at 273.15 K) performing good CO2/N2 selectivity (34.52 at 298.15 K)

    Proteomic analysis of amino acid metabolism differences between wild and cultivated Panax ginseng

    Get PDF
    Background: The present study aimed to compare the relative abundance of proteins and amino acid metabolites to explore the mechanisms underlying the difference between wild and cultivated ginseng (Panax ginseng Meyer) at the amino acid level. Methods: Two-dimensional polyacrylamide gel electrophoresis and isobaric tags for relative and absolute quantitation were used to identify the differential abundance of proteins between wild and cultivated ginseng. Total amino acids in wild and cultivated ginseng were compared using an automated amino acid analyzer. The activities of amino acid metabolism-related enzymes and the contents of intermediate metabolites between wild and cultivated ginseng were measured using enzyme-linked immunosorbent assay and spectrophotometric methods. Results: Our results showed that the contents of 14 types of amino acids were higher in wild ginseng compared with cultivated ginseng. The amino acid metabolism-related enzymes and their derivatives, such as glutamate decarboxylase and S-adenosylmethionine, all had high levels of accumulation in wild ginseng. The accumulation of sulfur amino acid synthesis-related proteins, such as methionine synthase, was also higher in wild ginseng. In addition, glycolysis and tricarboxylic acid cycle-related enzymes as well as their intermediates had high levels of accumulation in wild ginseng. Conclusion: This study elucidates the differences in amino acids between wild and cultivated ginseng. These results will provide a reference for further studies on the medicinal functions of wild ginseng

    Data_Sheet_1_Comparative efficacy of transcranial magnetic stimulation on different targets in Parkinson’s disease: A Bayesian network meta-analysis.docx

    No full text
    Background/ObjectiveThe efficacy of transcranial magnetic stimulation (TMS) on Parkinson’s disease (PD) varies across the stimulation targets. This study aims to estimate the effect of different TMS targets on motor symptoms in PD.MethodsA Bayesian hierarchical model was built to assess the effects across different TMS targets, and the rank probabilities and the surface under the cumulative ranking curve (SUCRA) values were calculated to determine the ranks of each target. The primary outcome was the Unified Parkinson’s Disease Rating Scale part-III. Inconsistency between direct and indirect comparisons was assessed using the node-splitting method.ResultsThirty-six trials with 1,122 subjects were included for analysis. The pair-wise meta-analysis results showed that TMS could significantly improve motor symptoms in PD patients. Network meta-analysis results showed that the high-frequency stimulation over bilateral M1, bilateral DLPFC, and M1+DLPFC could significantly reduce the UPDRS-III scores compared with sham conditions. The high-frequency stimulation over both M1 and DLPFC had a more significant effect when compared with other parameters, and ranked first with the highest SCURA value. There was no significant inconsistency between direct and indirect comparisons.ConclusionConsidering all settings reported in our research, high-frequency stimulation over bilateral M1 or bilateral DLPFC has a moderate beneficial effect on the improvement of motor symptoms in PD (high confidence rating). High-frequency stimulation over M1+DLPFC has a prominent beneficial effect and appears to be the most effective TMS parameter setting for ameliorating motor symptoms of PD patients (high confidence rating).</p
    corecore