4,119 research outputs found

    Deconvoluting Reversal Modes in Exchange Biased Nanodots

    Get PDF
    Ensemble-averaged exchange bias in arrays of Fe/FeF2 nanodots has been deconvoluted into local, microscopic, bias separately experienced by nanodots going through different reversal modes. The relative fraction of dots in each mode can be modified by exchange bias. Single domain dots exhibit a simple loop shift, while vortex state dots have asymmetric shifts in the vortex nucleation and annihilation fields, manifesting local incomplete domain walls in these nanodots as magnetic vortices with tilted cores.Comment: 17 pages, 3 figures. Phys. Rev. B in pres

    Stabilization and current-induced motion of antiskyrmion in the presence of anisotropic Dzyaloshinskii-Moriya interaction

    Full text link
    Topological defects in magnetism have attracted great attention due to fundamental research interests and potential novel spintronics applications. Rich examples of topological defects can be found in nanoscale non-uniform spin textures, such as monopoles, domain walls, vortices, and skyrmions. Recently, skyrmions stabilized by the Dzyaloshinskii-Moriya interaction have been studied extensively. However, the stabilization of antiskyrmions is less straightforward. Here, using numerical simulations we demonstrate that antiskyrmions can be a stable spin configuration in the presence of anisotropic Dzyaloshinskii-Moriya interaction. We find current-driven antiskyrmion motion that has a transverse component, namely antiskyrmion Hall effect. The antiskyrmion gyroconstant is opposite to that for skyrmion, which allows the current-driven propagation of coupled skyrmion-antiskyrmion pairs without apparent skyrmion Hall effect. The antiskyrmion Hall angle strongly depends on the current direction, and a zero antiskyrmion Hall angle can be achieved at a critic current direction. These results open up possibilities to tailor the spin topology in nanoscale magnetism, which may be useful in the emerging field of skyrmionics.Comment: 31 pages, 6 figures, to appear in Physical Review

    Asymmetric Reversal in Inhomogeneous Magnetic Heterostructures

    Get PDF
    Asymmetric magnetization reversal is an unusual phenomenon in antiferromagnet / ferromagnet (AF/FM) exchange biased bilayers. We investigated this phenomenon in a simple model system experimentally and by simulation assuming inhomogeneously distributed interfacial AF moments. The results suggest that the observed asymmetry originates from the intrinsic broken symmetry of the system, which results in local incomplete domain walls parallel to the interface in reversal to negative saturation of the FM. Magneto-optic Kerr effect unambiguously confirms such an asymmetric reversal and a depth-dependent FM domain wall in accord with the magnetometry and simulations.Comment: 4 pages, 4 figure

    Probing Magnetic Configurations in Co/Cu Multilayered Nanowires

    Full text link
    Magnetic configurations in heterostructures are often difficult to probe when the magnetic entities are buried inside. In this study we have captured magnetic and magnetoresistance "fingerprints" of Co nanodiscs embedded in Co/Cu multilayered nanowires using a first-order reversal curve method. In 200nm diameter nanowires, the magnetic configurations can be tuned by adjusting the Co nanodisc aspect ratio. Nanowires with the thinnest Co nanodiscs exhibit single domain behavior, while those with thicker Co reverse via vortex states. A superposition of giant and anisotropic magnetoresistance is observed, which corresponds to the different magnetic configurations of the Co nanodiscs.Comment: 14 pages, 3 figure

    Chirality control via double vortices in asymmetric Co dots

    Full text link
    Reproducible control of the magnetic vortex state in nanomagnets is of critical importance. We report on chirality control by manipulating the size and/or thickness of asymmetric Co dots. Below a critical diameter and/or thickness, chirality control is achieved by the nucleation of single vortex. Interestingly, above these critical dimensions chirality control is realized by the nucleation and subsequent coalescence of two vortices, resulting in a single vortex with the opposite chirality as found in smaller dots. Micromagnetic simulations and magnetic force microscopy highlight the role of edge-bound halfvortices in facilitating the coalescence process.Comment: 15 pages, 4 figure

    Growth-Induced In-Plane Uniaxial Anisotropy in V2_{2}O3_{3}/Ni Films

    Full text link
    We report on a strain-induced and temperature dependent uniaxial anisotropy in V2_{2}O3_{3}/Ni hybrid thin films, manifested through the interfacial strain and sample microstructure, and its consequences on the angular dependent magnetization reversal. X-ray diffraction and reciprocal space maps identify the in-plane crystalline axes of the V2_{2}O3_{3}; atomic force and scanning electron microscopy reveal oriented rips in the film microstructure. Quasi-static magnetometry and dynamic ferromagnetic resonance measurements identify a uniaxial magnetic easy axis along the rips. Comparison with films grown on sapphire without rips shows a combined contribution from strain and microstructure in the V2_{2}O3_{3}/Ni films. Magnetization reversal characteristics captured by angular-dependent first order reversal curve measurements indicate a strong domain wall pinning along the direction orthogonal to the rips, inducing an angular-dependent change in the reversal mechanism. The resultant anisotropy is tunable with temperature and is most pronounced at room temperature, which is beneficial for potential device applications
    • …
    corecore