286 research outputs found

    Prospects of CKM elements Vcs|V_{cs}| and decay constant fDs+f_{D_{s}^+} in Ds+μ+νμD_s^+\to\mu^+\nu_\mu decay at STCF

    Full text link
    We report a feasibility study of pure leptonic decay Ds+μ+νμD_s^+\to\mu^+\nu_\mu by using a fast simulation software package at STCF. With an expected luminosity of 1 ab11~\mathrm{ab}^{-1} collected at STCF at a center-of-mass energy of 4.009 GeV, the statistical sensitivity of the branching fraction is determined to be 0.3\%. Combining this result with the csc\rightarrow s quark mixing matrix element Vcs|V_{cs}| determined from the current global Standard Model fit, the statistical sensitivity of Ds+D_s^+ decay constant, fDs+f_{D_s^+}, is estimated to be 0.2\%. Alternatively, combining the current results of fDs+f_{D_s^+} calculated by lattice QCD, the statistical sensitivity of Vcs|V_{cs}| is determined to be 0.2\%, which helps probe possible new physics beyond. The unprecedented precision to be achieved at STCF will provide a precise calibration of QCD and rigorous test of Standard Model.Comment: 8pages, 7 figure

    Worldwide productivity and research trend of publications concerning electroactive materials and spinal cord injury: A bibliometric study

    Get PDF
    Purpose: We investigated the current state and trends in the area during the previous 10 years using bibliometric approaches to evaluate the global scientific output of research on electroactive materials and spinal cord injury.Methods: Studies on spinal cord injury in electroactive materials that were published between 2012 and 2022 were located using the Web of science (WOS) datebase. The software programs bibliometrix R-package and CiteSpace were used to do quantitative analyses of annual publications, nation, author, institution, journal source, co-cited references, and keywords. The studies were categorized by the research’s main points using a qualitative analysis, and publications having more than 10 citations each year.Results: In the final analysis, 1,330 relevant papers or reviews were included. There is an increased tendency in both the average annual citation rate and the number of publications in the discipline. The United States and the University of Toronto are the countries and institutions that have contributed the most to this discipline, respectively. The majority of authors are from the China and United States. Zhang Y is the author with the most published articles and holds the top position in the cited author h-index species. The journal with the highest number of published articles is “Disability and rehabilitation”; the journal is divided into four main areas including physics, materials, chemistry, molecular, and biology. The keyword analysis revealed a shift in research hotspots from schwann cell, fracture, and urinary disorders to carbon-based materials, functional recovery, and surgery. Analysis of qualitative data revealed that the role and mechanism of injectable conductive hydrogels in spinal cord healing after damage is a hot topic of current study, with the mechanism primarily focusing on the inhibition of oxidative stress (Nrf2) and apoptosis (Casepase 3).Conclusion: Our bibliometric analysis indicates that research on electroactive materials for spinal cord injury remains an active field of study. Moreover, contemporary research is concentrated on carbon-based materials, functional rehabilitation, and surgery

    Zambia Signal Functions study 2016 dataset

    Get PDF
    This dataset contains information related to health facilities’ infrastructure, staffing, equipment, supplies, and capacity to perform various clinical functions related to reproductive and maternal health service provision. The study was conducted in Central Province, Zambia and its primary aim was to assess facilities’ capacity to provide termination of pregnancy services. EMBARGOED UNTIL 31st DEC 201

    Aging and Sex Influence Cortical Auditory-Motor Integration for Speech Control

    Get PDF
    It is well known that acoustic change in speech production is subject to age-related declines. How aging alters cortical sensorimotor integration in speech control, however, remains poorly understood. The present event-related potential study examined the behavioral and neural effects of aging and sex on the auditory-motor processing of voice pitch errors. Behaviorally, older adults produced significantly larger vocal compensations for pitch perturbations than young adults across the sexes, while the effects of sex on vocal compensation did not exist for both young and older adults. At the cortical level, there was a significant interaction between aging and sex on the N1-P2 complex. Older males produced significantly smaller P2 amplitudes than young males, while young males produced significantly larger N1 and P2 amplitudes than young females. In addition, females produced faster N1 responses than males regardless of age, while young adults produced faster P2 responses than older adults across the sexes. These findings provide the first neurobehavioral evidence that demonstrates the aging influence on auditory feedback control of speech production, and highlight the importance of sex in understanding the aging of the neuromotor control of speech production

    Association of p53 rs1042522, MDM2 rs2279744, and p21 rs1801270 polymorphisms with retinoblastoma risk and invasion in a Chinese population.

    Get PDF
    Single nucleotide polymorphisms (SNPs) of p53 rs1042522, MDM2 rs2279744 and p21 rs1801270, all in the p53 pathway, which plays a crucial role in DNA damage and genomic instability, were reported to be associated with cancer risk and pathologic characteristics. This case-control study was designed to analyse the association between these SNPs and retinoblastoma (RB) in a Chinese Han population. These SNPs in 168 RB patients and 185 adult controls were genotyped using genomic DNA from venous blood. No significant difference was observed in allele or genotypic frequencies of these SNPs between Chinese RB patients and controls (all P > 0.05). However, the rs1042522 GC genotype showed a protective effect against RB invasion, as demonstrated by event-free survival (HR = 0.53, P = 0.007 for GC versus GG/CC). This effect was significant for patients with a lag time >1 month and no pre-enucleation treatment (P = 0.007 and P = 0.010, respectively), indicating an interaction between p53 rs1042522 and clinical characteristics, including lag time and pre-enucleation treatment status. Thus, the rs1042522 SNP may be associated with RB invasion in the Han Chinese population; however, further large and functional studies are needed to assess the validity of this association

    Autocrine Epiregulin Activates EGFR Pathway for Lung Metastasis Via EMT in Salivary Adenoid Cystic Carcinoma

    Get PDF
    Salivary adenoid cystic carcinoma (SACC) is characterized by invasive local growth and a high incidence of lung metastasis. Patients with lung metastasis have a poor prognosis. Treatment of metastatic SACC has been unsuccessful, largely due to a lack of specific targets for the metastatic cells. In this study, we showed that epidermal growth factor receptors (EGFR) were constitutively activated in metastatic lung subtypes of SACC cells, and that this activation was induced by autocrine expression of epiregulin (EREG), a ligand of EGFR. Autocrine EREG expression was increased in metastatic SACC-LM cells compared to that in non-metastatic parental SACC cells. Importantly, EREG-neutralizing antibody, but not normal IgG, blocked the autocrine EREG-induced EGFR phosphorylation and the migration of SACC cells, suggesting that EREG-induced EGFR activation is essential for induction of cell migration and invasion by SACC cells. Moreover, EREG-activated EGFR stabilized Snail and Slug, which promoted EMT and metastatic features in SACC cells. Of note, targeting EGFR with inhibitors significantly suppressed both the motility of SACC cells in vitro and lung metastasis in vivo. Finally, elevated EREG expression showed a strong correlation with poor prognosis in head and neck cancer. Thus, targeting the EREG-EGFR-Snail/Slug axis represents a novel strategy for the treatment of metastatic SACC even no genetic EGFR mutation

    Healing of the aponeurosis during recovery from aponeurotomy: morphological and histological adaptation and related changes in mechanical properties

    Get PDF
    Aponeurotomy, which is the transection of an aponeurosis perpendicular to its length, is performed to lengthen spastic and/or short muscles. During recovery, the cut ends of the aponeurosis are reconnected by new connective tissue bridging both ends. The aim of this study is to investigate the histological features of this new connective tissue as well as its mechanical properties after recovery from aponeurotomy. For this purpose, aponeurotomy was performed on the proximal aponeurosis of rat m. gastrocnemius medialis (GM), which was followed by six weeks of recovery. The lengths of aponeurotic tissues were measured as a function of active muscle length. The results are compared to a control group as well as to the acute effects and a sham operated group. Activation of the muscle at increasing lengths after aponeurotomy caused a gap between the cut ends of the aponeurosis. However, after recovery, new connective tissue is formed bridging the aponeurotic ends, consisting of thin collagen fibres, which are densely packed and generally arranged in the direction of the aponeurosis. The number of fibroblasts was three to five times higher than that of aponeurotic tissue of the intact parts as well as that of the acute and sham operated muscles. The strain of the new connective tissue as a function of active muscle length was shown to be about three times higher than that of the aponeurosis. It is concluded that the inserted new aponeurotic tissue is more compliant and that the aponeurosis becomes 10-15% longer than in untreated muscle. As a consequence, the muscle fibres located distally to the new aponeurotic tissue will become shorter than prior to aponeurotomy. This explains a shift of the length-force curve, which favours the restoration of the range of joint motion. © 2004 Orthopaedic Research Society. Published by Elsevier Ltd. All rights reserved

    G9a Is Essential for EMT-Mediated Metastasis and Maintenance of Cancer Stem Cell-Like Characters in Head and Neck Squamous Cell Carcinoma

    Get PDF
    Head and neck squamous cell carcinoma (HNSCC) is a particularly aggressive cancer with poor prognosis, largely due to lymph node metastasis and local recurrence. Emerging evidence suggests that epithelial-to-mesenchymal transition (EMT) is important for cancer metastasis, and correlated with increased cancer stem cells (CSCs) characteristics. However, the mechanisms underlying metastasis to lymph nodes in HNSCC is poorly defined. In this study, we show that E-cadherin repression correlates with cancer metastasis and poor prognosis in HNSCC. We found that G9a, a histone methyltransferase, interacts with Snail and mediates Snail-induced transcriptional repression of E-cadherin and EMT, through methylation of histone H3 lysine-9 (H3K9). Moreover, G9a is required for both lymph node-related metastasis and TGF-β-induced EMT in HNSCC cells since knockdown of G9a reversed EMT, inhibited cell migration and tumorsphere formation, and suppressed the expression of CSC markers. Our study demonstrates that the G9a protein is essential for the induction of EMT and CSC-like properties in HNSCC. Thus, targeting the G9a-Snail axis may represent a novel strategy for treatment of metastatic HNSCC
    corecore