5 research outputs found

    Hippocampal transcriptome-wide association study and neurobiological pathway analysis for Alzheimer's disease.

    No full text
    Genome-wide association studies (GWASs) have identified multiple susceptibility loci for Alzheimer's disease (AD), which is characterized by early and progressive damage to the hippocampus. However, the association of hippocampal gene expression with AD and the underlying neurobiological pathways remain largely unknown. Based on the genomic and transcriptomic data of 111 hippocampal samples and the summary data of two large-scale meta-analyses of GWASs, a transcriptome-wide association study (TWAS) was performed to identify genes with significant associations between hippocampal expression and AD. We identified 54 significantly associated genes using an AD-GWAS meta-analysis of 455,258 individuals; 36 of the genes were confirmed in another AD-GWAS meta-analysis of 63,926 individuals. Fine-mapping models further prioritized 24 AD-related genes whose effects on AD were mediated by hippocampal expression, including APOE and two novel genes (PTPN9 and PCDHA4). These genes are functionally related to amyloid-beta formation, phosphorylation/dephosphorylation, neuronal apoptosis, neurogenesis and telomerase-related processes. By integrating the predicted hippocampal expression and neuroimaging data, we found that the hippocampal expression of QPCTL and ERCC2 showed significant difference between AD patients and cognitively normal elderly individuals as well as correlated with hippocampal volume. Mediation analysis further demonstrated that hippocampal volume mediated the effect of hippocampal gene expression (QPCTL and ERCC2) on AD. This study identifies two novel genes associated with AD by integrating hippocampal gene expression and genome-wide association data and reveals candidate hippocampus-mediated neurobiological pathways from gene expression to AD

    Homotopic functional connectivity disruptions in schizophrenia and their associated gene expression

    No full text
    It has been revealed that abnormal voxel-mirrored homotopic connectivity (VMHC) is present in patients with schizophrenia, yet there are inconsistencies in the relevant findings. Moreover, little is known about their association with brain gene expression profiles. In this study, transcription-neuroimaging association analyses using gene expression data from Allen Human Brain Atlas and case-control VMHC differences from both the discovery (meta-analysis, including 9 studies with a total of 386 patients and 357 controls) and replication (separate group-level comparisons within two datasets, including a total of 258 patients and 287 controls) phases were performed to identify genes associated with VMHC alterations. Enrichment analyses were conducted to characterize the biological functions and specific expression of identified genes, and Neurosynth decoding analysis was performed to examine the correlation between cognitive-related processes and VMHC alterations in schizophrenia. In the discovery and replication phases, patients with schizophrenia exhibited consistent VMHC changes compared to controls, which were correlated with a series of cognitive-related processes; meta-regression analysis revealed that illness duration was negatively correlated with VMHC abnormalities in the cerebellum and postcentral/precentral gyrus. The abnormal VMHC patterns were stably correlated with 1287 genes enriched for fundamental biological processes like regulation of cell communication, nervous system development, and cell communication. In addition, these genes were overexpressed in astrocytes and immune cells, enriched in extensive cortical regions and wide developmental time windows. The present findings may contribute to a more comprehensive understanding of the molecular mechanisms underlying VMHC alterations in patients with schizophrenia

    Global urbanicity is associated with brain and behaviour in young people

    No full text
    International audienceUrbanicity is a growing environmental challenge for mental health. Here, we investigate correlations of urbanicity with brain structure and function, neuropsychology and mental illness symptoms in young people from China and Europe (total n = 3,867). We developed a remote-sensing satellite measure (UrbanSat) to quantify population density at any point on Earth. UrbanSat estimates of urbanicity were correlated with brain volume, cortical surface area and brain network connectivity in the medial prefrontal cortex and cerebellum. UrbanSat was also associated with perspective-taking and depression symptoms, and this was mediated by neural variables. Urbanicity effects were greatest when urban exposure occurred in childhood for the cerebellum, and from childhood to adolescence for the prefrontal cortex. As UrbanSat can be generalized to different geographies, it may enable assessments of correlations of urbanicity with mental illness and resilience globally
    corecore