83 research outputs found

    Microbiota: A potential orchestrator of antidiabetic therapy

    Get PDF
    The gut microbiota, as a ‘new organ’ of humans, has been identified to affect many biological processes, including immunity, inflammatory response, gut-brain neural circuits, and energy metabolism. Profound dysbiosis of the gut microbiome could change the metabolic pattern, aggravate systemic inflammation and insulin resistance, and exacerbate metabolic disturbance and the progression of type 2 diabetes (T2D). The aim of this review is to focus on the potential roles and functional mechanisms of gut microbiota in the antidiabetic therapy. In general, antidiabetic drugs (α-glucosidase inhibitor, biguanides, incretin-based agents, and traditional Chinese medicine) induce the alteration of microbial diversity and composition, and the levels of bacterial component and derived metabolites, such as lipopolysaccharide (LPS), short chain fatty acids (SCFAs), bile acids and indoles. The altered microbial metabolites are involved in the regulation of gut barrier, inflammation response, insulin resistance and glucose homeostasis. Furthermore, we summarize the new strategies for antidiabetic treatment based on microbial regulation, such as pro/prebiotics administration and fecal microbiota transplantation, and discuss the need for more basic and clinical researches to evaluate the feasibility and efficacy of the new therapies for diabetes

    PTHrP/PTHR1 and TGF-β Levels Are Inversely Associated in Liver Regeneration

    Get PDF
    Background. Transforming growth factor (TGF)-β provides growth control in liver regeneration. We have recently demonstrated that TGF-β induced parathyroid hormone-related protein (PTHrP) expression and secretion, and PTHrP mediated TGF-β-induced apoptosis in liver cells. However, whether PTHrP signaling pathway is altered during liver regeneration is unknown. Therefore we used a murine hepatectomy model in this study and tested the hypothesis that both PTHrP and TGF-β signaling pathways are upregulated during liver regeneration.    Methods. Swiss Webster mice received 70% hepatectomy or sham operation and euthanized at different time points post-surgery for analyses. Liver regeneration was determined by liver/body weight and proliferating cell nuclear antigen (PCNA) staining. mRNA levels of TGF-β1, TGF-β receptors, PTHrP, and PTHrP receptor 1 (PTHR1) were measured by real-time quantitative PCR. Protein levels of TGF-β1 were measured by ELISA and PTHrP and PTHR1 were measured by Western blotting.      Results. After 70% hepatectomy, the liver regeneration began at 24 hours and was restored to 82% of original liver mass at day 7. TGF-β1 and its receptor levels increased at 24 and 48 hours after hepatectomy, while PTHrP levels decreased at 12 hours and PTHR1 levels decreased at 12, 24 and 48 hours after hepatectomy. The levels of these molecules returned to similar levels as that in sham animals thereafter.    Conclusion. We demonstrated that an upregulation of the TGF-β and its receptors were associated with a down-regulation of PTHrP/PTHR1 expression during liver regeneration, which may contribute to hepatocyte proliferation and regeneration after hepatectomy

    Advancing herbal medicine: enhancing product quality and safety through robust quality control practices

    Get PDF
    This manuscript provides an in-depth review of the significance of quality control in herbal medication products, focusing on its role in maintaining efficiency and safety. With a historical foundation in traditional medicine systems, herbal remedies have gained widespread popularity as natural alternatives to conventional treatments. However, the increasing demand for these products necessitates stringent quality control measures to ensure consistency and safety. This comprehensive review explores the importance of quality control methods in monitoring various aspects of herbal product development, manufacturing, and distribution. Emphasizing the need for standardized processes, the manuscript delves into the detection and prevention of contaminants, the authentication of herbal ingredients, and the adherence to regulatory standards. Additionally, it highlights the integration of traditional knowledge and modern scientific approaches in achieving optimal quality control outcomes. By emphasizing the role of quality control in herbal medicine, this manuscript contributes to promoting consumer trust, safeguarding public health, and fostering the responsible use of herbal medication products

    Longitudinal spectral domain optical coherence tomography changes in eyes with intraocular lymphoma

    Get PDF
    BACKGROUND: Cases of patients with primary intraocular lymphoma (PIOL) were retrospectively analyzed to describe the longitudinal intra-retinal morphological changes in PIOL as visualized on images obtained by spectral domain optical coherence tomography (SD-OCT). RESULTS: In a retrospective case series, Heidelberg Spectralis SD-OCT images obtained in the longitudinal evaluation of patients with biopsy-proven PIOL were analyzed and assessed. The images were graded for the presence of macular edema (ME), pigment epithelial detachment (PED), subretinal fluid (SRF), and hyperreflective signals. SD-OCT scans of five eyes from five patients were assessed. Patients showed signs of inflammation, such as ME and SRF, which were resolved with treatments in some cases. Hyperreflective signals were found in all eyes in the form of nodules or bands across the retina, with the highest frequency of appearance in the ganglion cell layer, inner plexiform layer, photoreceptor layer, and retinal pigment epithelium; such signals increased with the progression of PIOL. CONCLUSION: SD-OCT may be employed to monitor the progression of PIOL. Hyperreflective signals on OCT may correspond with increase in disease activities, along with other findings such as ME, PED, and SRF

    A multifunctional azobenzene-based polymeric adsorbent for effective water remediation

    Get PDF
    The efficient removal of trace carcinogenic organic pollutants, such as polycyclic aromatic hydrocarbons (PAHs) and ionic dyes, from water is an important technical challenge. We report a highly effective recyclable multifunctional azobenzene (AZ)-based silica-supported polymeric adsorbent which can simultaneously remove both PAHs and anionic dyes from water to below parts per billion (ppb) level based on multiple interactions such as the hydrophobic effect, [pi]–[pi] stacking and electrostatic interactions, thus providing a new strategy for designer water remediation materials

    Management of the endoplasmic reticulum stress by activation of the heat shock response in yeast

    Get PDF
    In yeast Saccharomyces cerevisiae, accumulation of misfolded proteins in the endoplasmic reticulum (ER) causes ER stress and activates the unfolded protein response (UPR), which is mediated by Hac1p. The heat shock response (HSR) mediated by Hsf1p, mainly regulates cytosolic processes and protects the cell from stresses. Here, we find that a constitutive activation of the HSR could increase ER stress resistance in both wild-type and UPR-deficient cells. Activation of HSR decreased UPR activation in the WT (as shown by the decreased HAC1 mRNA splicing). We analyzed the genome-wide transcriptional response in order to propose regulatory mechanisms that govern the interplay between UPR and HSR and followed up for the hypotheses by experiments in vivo and in vitro. Interestingly, we found that the regulation of ER stress response via HSR is (1) only partially dependent on over-expression of Kar2p (ER resident chaperone induced by ER stress); (2) does not involve the increase in protein turnover via the proteasome activity; (3) is related to the oxidative stress response. From the transcription data, we also propose that HSR enhances ER stress resistance mainly through facilitation of protein folding and secretion. We also find that HSR coordinates multiple stress-response pathways, including the repression of the overall transcription and translation

    Methylprednisolone as Adjunct to Endovascular Thrombectomy for Large-Vessel Occlusion Stroke

    Get PDF
    Importance It is uncertain whether intravenous methylprednisolone improves outcomes for patients with acute ischemic stroke due to large-vessel occlusion (LVO) undergoing endovascular thrombectomy. Objective To assess the efficacy and adverse events of adjunctive intravenous low-dose methylprednisolone to endovascular thrombectomy for acute ischemic stroke secondary to LVO. Design, Setting, and Participants This investigator-initiated, randomized, double-blind, placebo-controlled trial was implemented at 82 hospitals in China, enrolling 1680 patients with stroke and proximal intracranial LVO presenting within 24 hours of time last known to be well. Recruitment took place between February 9, 2022, and June 30, 2023, with a final follow-up on September 30, 2023.InterventionsEligible patients were randomly assigned to intravenous methylprednisolone (n = 839) at 2 mg/kg/d or placebo (n = 841) for 3 days adjunctive to endovascular thrombectomy. Main Outcomes and Measures The primary efficacy outcome was disability level at 90 days as measured by the overall distribution of the modified Rankin Scale scores (range, 0 [no symptoms] to 6 [death]). The primary safety outcomes included mortality at 90 days and the incidence of symptomatic intracranial hemorrhage within 48 hours. Results Among 1680 patients randomized (median age, 69 years; 727 female [43.3%]), 1673 (99.6%) completed the trial. The median 90-day modified Rankin Scale score was 3 (IQR, 1-5) in the methylprednisolone group vs 3 (IQR, 1-6) in the placebo group (adjusted generalized odds ratio for a lower level of disability, 1.10 [95% CI, 0.96-1.25]; P = .17). In the methylprednisolone group, there was a lower mortality rate (23.2% vs 28.5%; adjusted risk ratio, 0.84 [95% CI, 0.71-0.98]; P = .03) and a lower rate of symptomatic intracranial hemorrhage (8.6% vs 11.7%; adjusted risk ratio, 0.74 [95% CI, 0.55-0.99]; P = .04) compared with placebo. Conclusions and Relevance Among patients with acute ischemic stroke due to LVO undergoing endovascular thrombectomy, adjunctive methylprednisolone added to endovascular thrombectomy did not significantly improve the degree of overall disability.Trial RegistrationChiCTR.org.cn Identifier: ChiCTR210005172

    Preparation of a High-Performance Catalyst Derived from Modified Lignin Carbon for the Hydrogen Evolution Reaction of Electrolyzed Water

    No full text
    Hydrogen energy is a plentiful and environmentally friendly form of secondary energy that could play a crucial role in achieving global energy sustainability. At the same time, the electrolysis of water for hydrogen production is a significant future-oriented advancement in the energy sector, whereas appropriate hydrogen evolution catalysts have always been the key to hydrogen evolution reactions. In this study, lignin was utilized as an appropriate raw material for modification in order to obtain carbon materials, which was then supported with Ru to prepare an Ru0.8@MLC catalyst. At a current density of 10 mA cm−2, the required overpotential was a mere 35.6 mV and the slope of Tafel was 31.7 mV dec−1. This study provides a feasible strategy and pathway for preparing highly efficient electrocatalysts for the hydrogen evolution reaction

    Newly UV-Curable Polyurethane Coatings Prepared by Multifunctional Thiol- and Ene-Terminated Polyurethane Aqueous Dispersions: Photopolymerization Properties

    No full text
    A novel approach toward the preparation of newly UV-curable polyurethane coatings composed of multifunctional thiol- and ene-terminated polyurethane aqueous dispersions is presented. By a synergistic combination of polyurethane dispersions synthesis and thiol-ene chemistry, strategies for the preparation of newly UV-curable polyurethane coatings are developed. Photo-DSC, real-time FTIR, DMA and tensile tests measurements are used to investigate the photopolymerization and mechanical behaviors of newly UV-curable polyurethane coatings. The newly polyurethane coatings have 1.5 times higher polymerization rate and final 99% functional groups conversion in air conditions compared to current urethane-acrylate based UV-curable polyurethane dispersions coatings. UV-cured polyurethane films prepared by this method are also found to exhibit increase in Young\u27s modulus and tensile strength at break by 25% and 10%, respectively. These experiment facts suggest that the incorporation of thiol-ene chemistry to the polyurethane dispersion coatings increase their polymerization rate, producing a high degree of cross-linking. This confirms the preparation of the targeted novel UV-curable polyurethane coatings and reveals the dramatic effect that changes in incorporation of thiol-ene chemistry can have on the photopolymerization behaviors of UV-curable polyurethane dispersions coatings systems. Crown Copyright (C) 2010 Published by Elsevier Ltd. All rights reserved
    • …
    corecore