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Microbiota: A potential
orchestrator of antidiabetic
therapy
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Department of Endocrinology, Chongqing Education Commission Key Laboratory of Diabetic
Translational Research, the Second Affiliated Hospital of Army Medical University, Chongqing, China
The gut microbiota, as a ‘new organ’ of humans, has been identified to affect many

biological processes, including immunity, inflammatory response, gut-brain neural

circuits, and energy metabolism. Profound dysbiosis of the gut microbiome could

change the metabolic pattern, aggravate systemic inflammation and insulin

resistance, and exacerbate metabolic disturbance and the progression of type 2

diabetes (T2D). The aim of this review is to focus on the potential roles and

functional mechanisms of gut microbiota in the antidiabetic therapy. In general,

antidiabetic drugs (a-glucosidase inhibitor, biguanides, incretin-based agents, and

traditional Chinese medicine) induce the alteration of microbial diversity and

composition, and the levels of bacterial component and derived metabolites,

such as lipopolysaccharide (LPS), short chain fatty acids (SCFAs), bile acids and

indoles. The altered microbial metabolites are involved in the regulation of gut

barrier, inflammation response, insulin resistance and glucose homeostasis.

Furthermore, we summarize the new strategies for antidiabetic treatment based

onmicrobial regulation, such as pro/prebiotics administration and fecal microbiota

transplantation, and discuss the need for more basic and clinical researches to

evaluate the feasibility and efficacy of the new therapies for diabetes.
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1 Introduction

The gut microbiota is the largest human microecosystem, and is a complex community

consisting of more than 500 microbial species (1, 2). The gut bacteria are mainly composed of

five phyla, namely, Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria and

Verrucomicrobia, and more than 90% of the bacteria belong to Firmicutes and

Bacteroidetes (3). Dysbiosis of the gut microbiota is associated with the occurrence and

development of various diseases, such as immunological diseases (4, 5), inflamed intestinal

diseases (6, 7), mental disorders (8, 9), and metabolic diseases (10–13). The homeostasis of
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gut microbiota could be affected by host genetics (14, 15),

environmental factors (16), medicines (17, 18), and lifestyles (19).

Kawano et al. found that high-fat, high-sugar diet aggravated glucose

intolerance and insulin resistance in mice by depleting Th17 inducing

microbes, particularly segmented filamentous bacteria (SFB) (20).

Besides, one randomized-controlled trial on the effects of non-

nutritive sweeteners (NNS) in human found that sucralose and

saccharin supplementation significantly impaired glycemic response

in healthy adults. Transplantation of microbiomes from top and

bottom NNS responders into germ-free (GF) mice indicated that

the alteration of gut microbiota induced by NNS could cause

personalized glycemic alterations, as exemplified by sucralose (21).

In the context of metabolic disorders, the gut microbiota is closely

connected with the dysfunction of glucose and lipid metabolism,

inflammation response and insulin resistance (22–24). Recent studies

found that GF mice are protected against high-fat diet (HFD) induced

glucose intolerance and obesity (25). In addition, colonization of GF

mice with gut microbiota isolated from conventionally raised obese

donors led to a significant increase in insulin resistance and body fat

content (26, 27). Consequently, the gut microbiota was identified to

be closely linked to the pathogenesis of diabetes and obesity.

Recently, numerous studies have shown that the gut microbiota is

changed in both type 1 diabetes (T1D) and type 2 diabetes (T2D)

patients, which indicates an etiological relationship between the gut

microbiota and diabetes. The microbiome of T1D presented a

decrease in diversity, an increase in the Firmicutes and Firmicutes/

Bacteroidetes ratio, and a reduction in Proteobacteria and

Bacteroidetes (28–30). Compared with controls, 16S rRNA data of

individuals with T1D showed a lower proportion of butyrate-

producing and mucin-degrading bacteria (28), and fecal microbiota

transplantation (FMT) from healthy donors halted the decline in

endogenous insulin production in new-onset T1D patients (31).

Similarly, in metagenome-wide association studies, T2D patients

were characterized by a moderate degree of gut microbial dysbiosis,

an increase in various opportunistic pathogens and a decrease in the

abundance of some universal butyrate-producing bacteria, such as

Clostridium species (12, 32). Among the commonly and consistently

reported findings, the genera of Bifidobacterium, Bacteroides,

Faecalibacterium, Akkermansia and Roseburia were negatively

associated with T2D, while the genera of Ruminococcus ,

Fusobacterium, and Blautia were positively associated with T2D

(33). Moreover, it has been found that the altered gut microbiota in

diabetes is associated with metabolic parameters. For instance, the

ratio of Bacteroidetes to Firmicutes and the ratios of Bacteroides-

Prevotella group to C. coccoides-E. rectale group were correlated

significantly and positively with plasma glucose concentration (34).

These studies suggest that dysbiosis of gut microbiota might greatly

contribute to the occurrence and progression of diabetes.

In this review, we focus on the potential roles and mechanisms of

gut microbiota in the antidiabetic therapy. Briefly, we summarize the

contribution of microbiota to glucoregulatory therapy for T2D, and

the demonstrated mechanism of microbial metabolites in regulating

inflammation response, insulin resistance and glucose homeostasis,

and discuss the new strategies for targeting intestinal bacteria in the

treatment of diabetes.
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2 Contribution of microbiota to
glucoregulatory therapy for T2D

Recently, it has been reported that the alteration of gut microbiota

mediated by antidiabetic agents was involved in the regulation of

glucose and lipid metabolism in diabetes. In this part, we concluded

the role of commonly used glucoregulatory agents in the regulation of

the composition and function of gut microbiota.
2.1 a-glucosidase inhibitor

a-glucosidase inhibitor, as one fermentation product of bacterial

strains derived from Actinoplanes sp. SE50 (35), inhibits a-
glucosidase activity and slows carbohydrate uptake in the brush

border of the small intestinal mucosa to reduce postprandial

hyperglycemia (36, 37). This results in an increase in dietary

carbohydrate in the distal intestine, where it becomes food for the

gut bacterial community. Some studies have focused on the effect of

a-glucosidase inhibitors on the gut microbial composition in

diabetes. Acarbose, voglibose, and miglitol are pseudo-

carbohydrates that competitively inhibit a-glucosidase activity.

Acarbose is the most used glucoregulatory drug of this family. In

T2D patients and rats, acarbose treatment significantly increased the

content of Bifidobacterium (38–40), which has an anti-inflammatory

effect, and has been reported to decrease in diabetes (41). The

increased B. longum showed a positive correlation with the level of

high-density lipoprotein cholesterol (HDL-C), a potent protective

factor against atherosclerosis (38). One controlled crossover trial

involving 52 Chinese prediabetic patients discovered that short

chain fatty acids (SCFAs)-producing taxa, such as Lactobacillus,

Faecalibacterium and Prevotella, were greatly increased after

acarbose treatment (42). SCFAs, including acetate, propionate and

butyrate, are fermented from indigestible dietary carbohydrates by

intestinal bacteria. It has been demonstrated that SCFAs have

important roles in stimulating glucagon-like peptide-1 (GLP-1) and

insulin secretion, ameliorating inflammation response, and

improving glucose intolerance and insulin resistance (43–45).

Besides, some SCFAs-producing bacteria, such as Lactobacillus

strains, have a broader spectrum of inhibitory activity than

acarbose, effectively inhibiting a-glucosidase and b-glucosidase
activities (46), and have beneficial effects on insulin resistance and

weight loss (47, 48). Moreover, administration of acarbose to

treatment-naïve T2D patients also changed the relative level of

microbial genes involved in bile acid metabolism, and increased the

ratio of primary bile acids to secondary bile acids. The correlation

analysis demonstrated that patients with a higher baseline abundance

of Bacteroides had lower levels of secondary bile acids, and exhibit

more beneficial therapeutic responses to acarbose treatment (49).

That is, the acarbose-changed microbiome was associated with its

treatment efficiency for T2D. Additionally, voglibose, another a-
glucosidase inhibitor, decreased the ratio of Firmicutes to

Bacteroidetes, and increased the circulating levels of taurocholic and

cholic acid, which ultimately has systemic effects on body weight and

lipid metabolism in HFD mice (50).
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2.2 Biguanides

Among biguanides, metformin is recommended by the American

Association of Clinical Endocrinologists (AACE) as a first-line

hypoglycemic treatment of T2D for its glucose lowering and insulin

sensitizing effects (51), and is the most commonly used oral

glucoregulatory agent. The hypoglycemic effect is ascribed to

suppress hepatic gluconeogenesis, improve the uptake and

utilization of glucose in peripheral tissues, promote the release of

glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) from L cells,

and enhance insulin sensitivity (52–55). In T2D patients and murine

models, metformin has been identified to modify gut microbial

structure and diversity. Indeed, Shin et al. found that metformin-

treated HFD mice showed significant differences in the abundance of

Firmicutes and Bacteroidetes, when compared with non-treated mice

(56). Similarly, Lee and Ryan also observed that metformin induced

an increase in the abundance of Bacteroidetes and Verrucomicrobia,

and a decrease in the abundance of Firmicutes in HFD mice (57) (58).

At the genus level, the SCFAs-producing bacteria such as Blautia,

Bacteroides, Butyricoccus and Phascolarctobacterium were enriched

by metformin treatment (59). Particularly, the abundance of

Akkermansia, which are mucin-degrading bacteria, was significantly

increased in metformin treated mice (57, 58). Administration of

cultured A. muciniphila to HFD mice significantly enhanced

glucose tolerance, and attenuated serum lipopolysaccharide (LPS)

and inflammation status by inducing Foxp3 regulatory T cells in

visceral adipose tissue (56).

Similar with the results observed in rodents, administration of

metformin to T2D patients increased the relative abundances of

Lactobacillus and Akkermansia, as well as the SCFAs-producing

bacteria such as Bifidobacterium, Prevotella, Megasphaera and

Butyrivibrio (60). B. adolescentis has been shown to negatively

correlate with HbA1c. Thus, this taxon might contribute to the

glucose-lowering effect of metformin (61). Besides, metformin

treatment decreased the relative abundance of Intestinibacter, and

enriched Escherichia in human feces. Whereas Escherichia probably

plays an important role in the side-effects of metformin (62). In

addition to changing the microbial composition, metformin

treatment also promoted a functional shift in the gut microbiome,

increasing the levels of propionate, butyrate and bile acids in the gut

of T2D patients (61–63). As reported by CT Jiang, metformin-

increased glycoursodeoxycholic acid (GUDCA) was identified as an

intestinal FXR antagonist that improved various metabolic endpoints

in mice with established obesity (64). Even though the mechanism of

hypoglycemia of metformin is not completely clear, its administration

altered the gut microbial composition and function, which might be

involved in the regulation of glucose metabolism.
2.3 Incretin-based glucoregulatory agents

Incretins are small peptide hormones secreted by intestinal

endocrine cells responding to nutrient ingestion, mainly glucose

and fat. There are two main incretin hormones in humans: GLP-1

and GIP (gastric inhibitory peptide). They stimulate insulin secretion

in a glucose-dependent manner, regulate appetite and gastric

emptying, and play a crucial role in the local gastrointestinal
Frontiers in Endocrinology 03
physiology (65). Additionally, PYY is one of the first hormones to

be expressed in the developing fetal gastrointestinal tract. The

primary role of PYY is acting as a potent anorectic hormone. PYY3-

36, a major form of PYY in both the gut mucosal endocrine cells and

the circulation, induces satiety by targeting the appetite-regulating

system of the hypothalamus (66). Insulin-like peptide-5 (INSL5) is an

orexigenic gut hormone, secreted by enteroendocrine L cells present

in the ileum and colon together with GLP-1 and PYY. INSL5

modestly inhibited forskolin-stimulated GLP-1 secretion in NCI-

H716 cells (67).

Naturally intact GLP-1 is degraded rapidly, mainly via enzymatic

inactivity by dipeptidyl peptidase-4 (DPP-4). Clinically, incretin-

based therapies for diabetes include GLP-1 receptor agonists

(incretin mimetics) and DPP-4 inhibitors (DPP-4i, incretin

enhancers). The GLP-1 receptor agonist, such as liraglutide,

promotes the synthesis and secretion of insulin, and inhibits

appetite, gastric emptying and food intake to control blood glucose

level in diabetes (68, 69). In the liraglutide-treated obese and diabetic

rodents, in addition to the obviously improved glucose and lipid

metabolism, substantial rearrangements of bacterial structure were

observed. It has been found that liraglutide decreased the obesity-

related phylotypes (such as Erysipelotrichaceae, Roseburia, and

Parabacteroides), and increased the lean-related phylotypes (such as

Prevotella, Lactobacillus and Akkermansia) (70, 71). The bacteria

positively correlated with hepatic steatosis associated parameters

were decreased in HFD rats upon liraglutide intervention (72).

Colonization of GF mice with gut microbiota from liraglutide-

treated diabetic mice improved glucose-induced insulin secretion

and regulated the intestinal immune system (73). Additionally,

some SCFAs-producing bacteria, including Bacteroides ,

Lachnospiraceae and Bifidobacterium, were selectively enriched in

liraglutide-treated diabetic rats (74). The liraglutide treatment was

also associated with bile acid metabolism (75). SCFAs stimulates

GLP-1 expression and secretion through binding with G-coupled

protein receptor GPR43 and GPR41 (76), while bile acids via other

receptors such as FXR and TGR5 (77). However, one randomized

placebo-controlled trial in adults with T2D suggested that the

beneficial effects of liraglutide on glucose metabolism are not linked

to the intestinal microbiota composition, when used as add-on

therapies to metformin or sulphonylureas (78). As mentioned in

the study, the limitations including the lack of dietary monitoring/

standardization and control of co-medication use might be the reason

for the inconsistency with the results observed in animal experiments.

DPP-4i is one of the most extensively used oral glucoregulatory

agent, and its target DPP-4 enzyme has a high expression level in the

small intestine (79, 80). DPP-4i exerts a hypoglycemic effect by

inhibiting the degradation activity of DPP-4 to increase the blood

level of GLP-1 and GIP (81). Recently, some subjects have revealed

that the gut microbial community is modified by DPP-4i

administration. In obese and diabetic rats, sitagliptin treatment

moderately restored the microbial composition to that in controls.

At the phylum level, sitagliptin reduced the ratio of Firmicutes to

Bacteroidetes (82). At the genus level, probiotics Bifidobacterium and

Lactobacillus were obviously increased after sitagliptin treatment (39),

while the abundance of SCFAs-producing bacteria (Roseburia and

Clostridium) was not significantly altered by sitagliptin. Consistent

with these findings, in our previous study, we found that DPP-4i
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(sitagliptin and saxagliptin) altered the gut microbial composition in

T2D patients and HFD mice, especially reducing the ratio of

Firmicutes to Bacteroidetes, and fecal microbiota transfer from

sitagliptin-treated T2D patients to GF mice improved the glucose

tolerance in recipients (83). Moreover, we have demonstrated that

sitagliptin also changed the pattern of fecal and serum metabolites in

HFD mice and T2D patients, including the levels of succinate,

branched-chain amino acids and aromatic amino acids (83, 84). We

are still exploring the molecular mechanism by which DPP-4i

improves glucose homeostasis through gut microbiota-derived

metabolites, especially indole derivatives.
2.4 Traditional Chinese medicine

Traditional Chinese medicine (TCM), generally also known as

botanical medicine or phytomedicine, is an important scientific and

technological resource with therapeutic or other human health

benefits. Generally, the use of TCM herbal formula (FuFang in

Chinese) is fundamental and includes several medicinal herbs.

TCM has been reported to be an effective remedy for metabolic

disorders, including T2D (85). In recent ten years, TCM with

antidiabetic effects has also been identified to have effects on the

structure of the gut microbiota (86, 87). Berberine is the major

pharmacological component of the Chinese herb Coptis chinensis

(Huanglian). The oral bioavailability of berberine is poor (below 5%),

and over 95% stays in the gut (88, 89), which suggests a potential effect

on the intestinal bacteria. Actually, it has been reported that berberine

induced a marked shift in the structure of gut microbiota, some of

which were selectively enriched in putative SCFAs-producing

bacteria, including Blautia, Allobaculum , Bacteriodes and

Butyricoccus, consequently leading to an increase in the fecal SCFAs

concentration in obese and T2D rats (59, 90, 91). Berberine was also

identified to promote the gene expression of ACK, MMD and BUT,

which are the key enzymes in the synthetic pathway for SCFAs (92).

In addition, berberine has been reported to have a hypoglycemic effect

in T2D patients by inhibiting deoxycholic acid biotransformation by

Ruminococcus bromii (89). Likewise, administration of Gegen Qinlian

Decoction (GQD) to T2D rats decreased the levels of blood glucose

and inflammatory cytokines, and altered the gut microbial

composition, especially increasing the proportions of SCFAs-

producing and anti-inflammatory bacteria, and decreasing the

proportions of conditioned pathogenic bacteria associated with

diabetic phenotype (93). Moreover, a double-blinded trial revealed a

dose-dependent deviation of gut microbiota in response to GQD

treatment in T2D patients, and the deviation occurred before

significant improvement in T2D symptoms. The GQD enriched F.

prausnitzii was positively correlated with b-cell function, and

negatively correlated with FBG, HbA1c and postprandial blood

glucose levels in T2D patients (94). In addition, a water extract of

Ganoderma lucidum mycelium (WEGL), which is a medicinal

mushroom used in TCM, decreased the ratio of Firmicutes to

Bacteroidetes and endotoxin-bearing Proteobacteria levels, as well as

improved inflammation response and insulin resistance in HFD mice.

The effects were transmissible via FMT from WEGL-treated mice to

HFD mice (95). Taken together, these studies indicate that the

amelioration of hyperglycemia and insulin resistance by TCM in
Frontiers in Endocrinology 04
T2D is at least partially mediated by structural regulation of the

gut microbiota.
3 Potential mechanisms of microbial
effects on metabolism in diabetes

The exploration of the potential mechanisms of gut microbiota in

the occurrence and progression of diabetes mainly focuses on

microbial metabolites, especially LPS, SCFAs, bile acids, and

indoles, which are involved in the regulation of gut barrier,

inflammation response, insulin resistance and glucose homeostasis

(96–98) (Figure 1).
3.1 Gut barrier and inflammation response

Dysbiosis of gut microbiota induces an increase in the levels of

pathogens and endotoxins in the intestine. These toxic substances will

induce intestinal macrophages to release proinflammatory factors

such as TNF-a and histamine, and induce inflammatory response in

intestinal cells, subsequently increasing the permeability of intestinal

mucosa and damaging the intestinal barrier (99, 100). It has been

recognized that low-grade inflammation is one of the most important

pathophysiologic factors resulting in the progression of T2D (101).

The intestinal bacteria produced LPS is a triggering factor for low-

grade inflammation via the LPS-CD14 system, and further induces

metabolic endotoxemia and insulin resistance (102). Two species (B.

vulgatus and B. dorei) with potential benefits for T2D have been

found to decrease gut microbial LPS production, and effectively

suppress pro-inflammatory immune response in a mouse model

(103). Similarly, administration of A. muciniphila to diabetic mice

reduced the level of serum LPS, relieved intestinal inflammation, and

improved glucose homeostasis (104). The butyrate-producing

bacteria (such as Roseburia and Faecalibacterium) is known to

eliminate constitutive NF-kB and suppress its activation,

subsequently reducing colonic paracellular permeability and

preventing inflammatory response (105, 106).

In addition, indole, as the most prevalent metabolite of

tryptophan, is produced by various bacterial species, including

those belonging to the genera Bacteroides, Escherichia, and

Clostridium (107). Recent studies have revealed that indoles-

induced aryl hydrocarbon receptor (AhR) activation may be an

important way for bacteria to improve inflammatory status and

insulin resistance (108). For example, indole derivates indole-3-

carboxaldehyde upregulates the production of anti-inflammatory

factor IL-22 by activating AhR in intestinal immune cells (109, 110).
3.2 Gut-brain axis

Bacteria produced metabolites, such as SCFAs, bile acids and

indoles, have effects on the intestinal endocrine cells to modulate the

secretion of gut hormones, which play important roles in the gut-

brain axis (111). SCFAs promote the secretion of GLP-1 and PYY by

binding to membrane receptors GPR41 and GPR43 on endocrine L
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cells (112, 113). Likewise, depletion of Firmicutes and Bacteroidetes

with antibiotics in diet-induced obesity mice increased production of

gut-derived taurocholic acid, which promoted GLP-1 secretion from

L-cells (114). Indole was also identified to promote GLP-1 secretion

from L cells during short exposure, but reduce GLP-1 release over

longer period. These different effects were due to whether indole

enhance the acute secretion of GLP-1 by enhancing Ca2+ entry or

reduce its release by blocking NADH dehydrogenase to slow ATP

production (115). The secreted GLP-1 and PYY can inhibit appetite,

gastric emptying and gastric acid secretion through acting on pro-

opiomelanocortin (POMC) and neuropeptide Y (NPY) neurons in

the hypothalamus (116). Similarly, bile acid reaches hypothalamus,

specifically activates the expression of AgRP/NPY neuron membrane

receptor TGR5, and then regulates the appetite of mice (117).

Additionally, Gilles Mithieux and his colleagues reported that

propionate, butyrate and succinate activated intestinal gluconeogenesis

(IGN) to initiate a gut-brain neural circuit that has beneficial effects on

glucose tolerance and insulin resistance (43, 118).

Additionally, gut-derived serotonin (5-hydroxytryptamine, 5-

HT), as a metabol i te of tryptophan, is re leased from

enterochromaffin (EC) cells. 5-HT has been discovered to shaped

the gut microbiota composition, and inhibited b-defensins
production from colonic epithelial cells (119, 120). Besides, 5-HT

signaling is reported to be involved in the increase of L-cell density in

mouse and human intestine and elevation of GLP-1 secretory capacity

(121). Moreover, the activation of GLP-1 leads to the release of 5-HT

in brain, subsequently reducing appetite and body weight (122).
3.3 Gut-liver axis

Accumulating evidence demonstrated that bile acids as

pleiotropic signaling molecules modulate specific host metabolic
Frontiers in Endocrinology 05
pathways and inflammatory response involving gut-liver crosstalk,

via nuclear and G-Protein-coupled receptors, such as the farnesoid X-

activated receptor (FXR) and TGR5 (64, 123). FXR signaling

represents a core regulatory pathway involved in glucose and lipid

metabolism, and maintains the barrier integrity and intestinal

homeostasis (124, 125). TGR5 is a membrane receptor, mainly

activated by lithocholic acid and deoxycholic, which are secondary

bile acids produced by microbial metabolism. TGR5 has been

discovered to have effects on inflammation, insulin pathway and

glucose metabolism (126, 127).

Except for bile acids, tryptophan metabolite such as tryptamine

and indole-3-acetate (I3A) attenuated inflammatory response and

reduced fatty acid synthesis via activating receptor AhR in

hepatocytes (128). SCFAs are readily absorbed by colonocytes upon

produced. Butyrate is mainly utilized by colonic epithelium as an

energy source, and a large amount of acetate enters systemic

circulation, while propionate is primary utilized by the liver (129).

Acetate and butyrate were found to be highly involved in liver

palmitate and cholesterol synthesis, and propionate is a substrate

for de novo gluconeogenesis in liver, not for lipogenesis (130).

In addition to gut-brain axis and gut-liver axis, microbial

metabolites also play roles in adipose, pancreas and muscle,

involved in the regulation of inflammatory response, insulin

secretion, insulin sensitivity, etc. (44, 131, 132).
4 Targeting gut bacteria - a new
therapeutic strategy for T2D

The molecular mechanism of gut microbiota in the

pathophysiology of T2D is still not completely clear, while existing

studies have indicated that some interventions, such as probiotics,

prebiotics and FMT targeting gut bacteria improved glucose
FIGURE 1

The primary functional mechanism of bacterial metabolites in the improvement of insulin resistance and glucose homeostasis. ① LPS, SCFAs and indoles
improve gut barrier, and inhibit intestinal inflammation response. ② Bile acids, indoles, SCFAs, succinate and 5-HT promote GLP-1 and PYY secretion, and
inhibit appetite, gastric emptying and gastric acid secretion through gut-brain axis. ③ Bile acids and indoles promote glycogen synthesis and insulin
sensitivity, and inhibit fatty acid synthesis through gut-liver axis.
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homeostasis and insulin resistance, which indicates that these

interventions might be potential strategies for T2D therapy.
4.1 Probiotics and prebiotics

Probiotics, particularly Lactobacilli and Bifidobacterium, have

recently emerged as prospective biotherapeutics in metabolic

disease, which is supported by their established multifunctional

roles in the prevention and treatment of metabolic disturbance

(133, 134). In HFD mice, probiotics (L. rhamnosus, L. acidophilus

and B. bifidum) treatment significantly reversed the impaired

intestinal permeability, systemic inflammation and glucose

intolerance (135). Administration of L. plantarum HAC01 to T2D

mice obviously lowered blood glucose and HbA1c levels, and

improved glucose tolerance and HOMA-IR. Notably, L. plantarum

HAC01 increased the Akkermansiaceae family and increased SCFAs

in serum (136). In randomized controlled trials, L. acidophilus and B.

lactis or B. bifidum significantly ameliorated the FBG and antioxidant

status in T2D patients (137, 138). Likewise, L. paracasei HII01

supplementation significantly decreased the levels of FBG, LPS,

TNF-a, IL-6 and hsCRP in plasma of T2D patients compared with

the placebo group (139).

Apart from Lactobacillus and Bifidobacterium, other bacteria

associated with metabolic improvement may also be potential

probiotics, such as Akkermansia muciniphila. Its abundance

markedly increased after prebiotic feeding (140, 141), or metformin

treatment in diabetic patients and mice (56, 61). A. muciniphila MucT

administration to diabetic mice increased the intestinal levels of

endocannabinoids, which modulate inflammation, gut barrier and

gut peptide secretion (104). Plovier et al. revealed that Amuc_1100, a

specific protein isolated from the outer membrane of A. muciniphila,

interacted with Toll-like receptor 2 (TLR2) to improve the gut barrier,

and partly recapitulated the beneficial effects of the bacterium.

Furthermore, administration with live or pasteurized A. muciniphila

grown on synthetic medium is safe for obese individuals (142), which

paves the way for its potential clinical application in metabolic

syndromes. Another potential probiotic, Parabacteroides goldsteinii,

was also identified to enhance intestinal integrity, improve

inflammation and insulin resistance, and promote adipose tissue

thermogenesis after oral administered to HFD mice (143).

Prebiotics are nondigestible carbohydrates, selectively stimulating

the growth and activity of some bacteria, such as Lactobacillus and

Bifidobacterium (144). Oligofructose-enriched diet reduced the ratio

of Firmicutes to Bacteroidetes, increased the abundance of probiotics,

such as Bifidobacterium and Prevotella, and improved glucose

tolerance and L-cell function in ob/ob mice (145). Oligofructose

also improved fasting blood glucose and glucose-stimulated insulin

secretion, and reduced body weight gain in HFD mice, and the effects

were modulated in a GLP-1 receptor-dependent manner (145, 146).

Moreover, supplementation with oligofructose-enriched inulin to

T1D participants for 12 weeks increased C-peptide, and improved

intestinal permeability (147). However, some studies on consumption

of pro/prebiotics by individuals with T2D have provided conflicting

results, which do not provide evidence for the role of pro/prebiotics in

the treatment of diabetes (148, 149). Therefore, the effects of pre/
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probiotics need to be confirmed by conducting more reliable

clinical trials.
4.2 Fecal microbiota transplantation

FMT has been verified to be effective for the treatment of

Clostridium difficile infection in immunocompromised patients

(150) and subjects with depressive disorder (8). Intriguingly, FMT

is also carried out in the treatment of metabolic syndrome, including

diabetes and obesity. Transfer of fecal samples from metformin-

treated T2D patients to GF mice showed that glucose tolerance was

improved in recipient mice (61). Similarly, our study discovered that

FMT from DPP-4i-treated T2D patients to GF mice also improved

the glucose intolerance induced by HFD in recipient mice (83).

Moreover, clinical studies showed that intestinal microbiota from

lean donors to individuals with metabolic syndrome attenuated

insulin resistance, increased gut microbial diversity, especially the

levels of the butyrate-producing bacterium Roseburia intestinalis, and

changed the plasma metabolites, such as g-aminobutyric acid and

tryptophan (151, 152). In addition, allogenic FMT using feces from

metabolic syndrome donors decreased insulin sensitivity in metabolic

syndrome recipients compared with using post-Roux-en-Y gastric

bypass donors (153). However, we must emphasize that these studies

did not report data on glucose levels during the intervention, and not

all participants responded to FMT (152). The method is still very new

and, thus, much more research must be dedicated to FMT, to explore

the potential risks related to its impact on the physiological functions

regulated by fecal microorganisms, most of which are unidentified

and uncharacterized at present.
5 Conclusion

The gut microbiota is involved in the occurrence and

development of diabetes, and responses to antidiabetic therapy both

in intestinal tract and in extraintestinal tissues. In this review, we

summarized the current studies about the effect and mechanism of

gut microbiota in antidiabetic therapy, especially in improving

inflammation, glucose homeostasis and insulin resistance

modulated by antidiabetic agents. Although the molecular

mechanism remains unclear, advances in sequencing technologies

and bioinformatics have enabled the enormous complexity and

number of metabolites derived from intestinal bacteria to be

identified in biological samples. Current research suggests that LPS,

SCFAs, bile acids and indoles are involved in regulating host

metabolic homeostasis. However, which strains induce altered

metabolites, and whether the strains can be cultured in vitro need

to be investigated. Studies are also necessary to address where and

how the altered metabolites regulate host metabolism. Given the

many insights so far based on animal experiments, it will be key to

determine which phenotypes observed in animal models are relevant

to humans and could be repeated in humans. Therefore, more clinical

trials should be summoned to clarify the potential therapeutic effect of

gut bacteria and derived metabolites in diabetes.
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