43 research outputs found

    Design and Evaluation of Approximate Logarithmic Multipliers for Low Power Error-Tolerant Applications

    Get PDF
    In this work, the designs of both non-iterative and iterative approximate logarithmic multipliers (LMs) are studied to further reduce power consumption and improve performance. Non-iterative approximate LMs (ALMs) that use three inexact mantissa adders, are presented. The proposed iterative approximate logarithmic multipliers (IALMs) use a set-one adder in both mantissa adders during an iteration; they also use lower-part-or adders and approximate mirror adders for the final addition. Error analysis and simulation results are also provided; it is found that the proposed approximate LMs with an appropriate number of inexact bits achieve a higher accuracy and lower power consumption than conventional LMs using exact units. Compared with conventional LMs with exact units, the normalized mean error distance (NMED) of 16-bit approximate LMs is decreased by up to 18% and the power-delay product (PDP) has a reduction of up to 37%. The proposed approximate LMs are also compared with previous approximate multipliers; it is found that the proposed approximate LMs are best suitable for applications allowing larger errors, but requiring lower energy consumption and low power. Approximate Booth multipliers fit applications with less stringent power requirements, but also requiring smaller errors. Case studies for error-tolerant computing applications are provided

    Stable Isotopomers of myo-Inositol Uncover a Complex MINPP1-Dependent Inositol Phosphate Network

    Get PDF
    The water-soluble inositol phosphates (InsPs) represent a functionally diverse group of small-molecule messengers involved in a myriad of cellular processes. Despite their centrality, our understanding of human InsP metabolism is incomplete because the available analytical toolset to characterize and quantify InsPs in complex samples is limited. Here, we have synthesized and applied symmetrically and unsymmetrically 13C-labeled myo-inositol and inositol phosphates. These probes were utilized in combination with nuclear magnetic resonance spectroscopy (NMR) and capillary electrophoresis mass spectrometry (CE-MS) to investigate InsP metabolism in human cells. The labeling strategy provided detailed structural information via NMR─down to individual enantiomers─which overcomes a crucial blind spot in the analysis of InsPs. We uncovered a novel branch of InsP dephosphorylation in human cells which is dependent on MINPP1, a phytase-like enzyme contributing to cellular homeostasis. Detailed characterization of MINPP1 activity in vitro and in cells showcased the unique reactivity of this phosphatase. Our results demonstrate that metabolic labeling with stable isotopomers in conjunction with NMR spectroscopy and CE-MS constitutes a powerful tool to annotate InsP networks in a variety of biological contexts

    β-lapachone regulates mammalian inositol pyrophosphate levels in an NQO1- and oxygen-dependent manner

    Get PDF
    Inositol pyrophosphates (PP-InsPs) are energetic signaling molecules with important functions in mammals. As their biosynthesis depends on ATP concentration, PP-InsPs are tightly connected to cellular energy homeostasis. Consequently, an increasing number of studies involve PP-InsPs in metabolic disorders, such as type 2 diabetes, aspects of tumorigenesis, and hyperphosphatemia. Research conducted in yeast suggests that the PP-InsP pathway is activated in response to reactive oxygen species (ROS). However, the precise modulation of PP-InsPs during cellular ROS signaling is unknown. Here, we report how mammalian PP-InsP levels are changing during exposure to exogenous (H 2 O 2 ) and endogenous ROS. Using capillary electrophoresis electrospray ionization mass spectrometry (CE-ESI-MS), we found that PP-InsP levels decrease upon exposure to oxidative stressors in HCT116 cells. Application of quinone drugs, particularly β-lapachone (β-lap), under normoxic and hypoxic conditions enabled us to produce ROS in cellulo and to show that β-lap treatment caused PP-InsP changes that are oxygen-dependent. Experiments in MDA-MB-231 breast cancer cells deficient of NAD(P)H:quinone oxidoreductase-1 (NQO1) demonstrated that β-lap requires NQO1 bioactivation to regulate the cellular metabolism of PP-InsPs. Critically, significant reductions in cellular ATP concentrations were not directly mirrored in reduced PP-InsP levels as shown in NQO1-deficient MDA-MB-231 cells treated with β-lap. The data presented here unveil unique aspects of β-lap pharmacology and its impact on PP-InsP levels. The identification of different quinone drugs as modulators of PP-InsP synthesis will allow the overall impact on cellular function of such drugs to be better appreciated

    Flux regulation through glycolysis and respiration is balanced by inositol pyrophosphates in yeast

    Get PDF
    Although many prokaryotes have glycolysis alternatives, it\u27s considered as the only energy-generating glucose catabolic pathway in eukaryotes. Here, we managed to create a hybrid-glycolysis yeast. Subsequently, we identified an inositol pyrophosphatase encoded by OCA5 that could regulate glycolysis and respiration by adjusting 5-diphosphoinositol 1,2,3,4,6-pentakisphosphate (5-InsP7) levels. 5-InsP7 levels could regulate the expression of genes involved in glycolysis and respiration, representing a global mechanism that could sense ATP levels and regulate central carbon metabolism. The hybrid-glycolysis yeast did not produce ethanol during growth under excess glucose and could produce 2.68 g/L free fatty acids, which is the highest reported production in shake flask of Saccharomyces cerevisiae. This study demonstrated the significance of hybrid-glycolysis yeast and determined Oca5 as an inositol pyrophosphatase controlling the balance between glycolysis and respiration, which may shed light on the role of inositol pyrophosphates in regulating eukaryotic metabolism

    atomicallydispersedfeatomsanchoredonndopedcarbonhollownanospheresboosttheelectrocatalyticperformanceforoxygenreductionreaction

    No full text
    A reliable SiO 2 -templated strategy is elaborately designed to synthesize atomically dispersed Fe atoms anchored on N-doped carbon nanospheres, which exhibit excellent performance for oxygen reduction reaction in alkaline medium due to the presence of numerous atomically dispersed Fe–N 4 moieties and unique spherical hollow architecture. Display omitte

    Inside-Out Migration of Noble Metals in Ag2S Nanoparticles

    No full text
    Materials such as metals, semiconductors, and oxides are attractive at nanometer scales due to the physical and chemical property differences with their bulk counterparts as induced by the quantum confinement effect and large surface-to-volume ratios. In particular, heterogeneous nanostructures consisting of semiconductors and noble metals are extremely important because of the synergistic effects occurring at the interfaces between their noble metal and semiconductor domains; these often equip the heterogeneous nanostructures with improved properties compared to those of isolated individual components. Thus far, heterogeneous nanostructures have garnered a considerable research interest, and tremendous development in achieving high degree control over these nanostructures with respect to their domain size, morphology, and composition has been realized. Their immense application potential in optics, catalysis, imaging, and biomedicine render them a field full of original innovation possibilities. Herein, we demonstrate a phenomenon observed in core-shell nanostructures composed of noble metals and silver sulfide (Ag2S): the inside-out migration of noble metals in Ag2S nanoparticles. We prepare core-shell nanostructures with noble metals and Ag2S residing at the core and shell regions, respectively, through various synthetic strategies including seed-mediated growth and galvanic replacement reactions followed by sulfidation. We then characterize the core-shell nanostructures before and after aging them in toluene at room temperature (e.g. 25 degrees C) for a period of time up to 72 h. In contrast to the reported diffusion of Au from the outside to the inside of InAs or PbTe nanoparticles, which results in an Au core encapsulated by an amorphous InAs or PbTe shell, the noble metals (Au, Ag, Pd, or Pt) in core-shell nanostructures with noble metals and Ag2S residing at the core and shell regions, respectively, are found to diffuse from the inside to the outside through the Ag2S shell. Thus, heterogeneous nanodimers consisting of the corresponding noble metal and Ag2S are formed. Observations using an electron transmission microscope confirm that the inside-out migration of noble metals in Ag2S is carried out in a holistic manner. Due to the apparent interface mismatch between face-centered cubic noble metals and monoclinic Ag2S crystal phases, defects such as vacancies must exist at these interfaces. This makes the migration of noble metals in Ag2S possible by either a vacancy/substitutional mechanism or by the self-purification mechanism that occurs intrinsically in nanoscale semiconductors. As the migration rate of noble metals in Ag2S increases with the decrease in the size of the noble metal core and the radius of noble metal atoms, the inside-out migration rates of Ag, Pd, and Pt in Ag2S are found to be much higher than that of Au because of their smaller particle sizes or atom radii. This scientific phenomenon can be effective in the development of synthetic routes for heterogeneous nanostructures that might not be obtained by conventional methods

    Size and shape controlled synthesis of rhodium nanoparticles

    No full text
    Controlling of the size and/or shape of noble metal nanoparticles (NMNPs) is crucial to make use of their unique properties and to optimize their performance for a given application. Within the past decades, the development of wet-chemistry methods enables fine tailoring of the size and morphology of NMNPs. We herein devote this review to introduce the wet-chemistry-based methods for the size and shape-controlled synthesis of rhodium (Rh) NPs. We start with a summarization of the wet-chemistry-based approaches developed for producing Rh NPs and then focus on recent fascinating advances in their size- and shape-control in the aspects of kinetic and thermodynamic regimes depending on the synthetic conditions. Then, we use several typical examples to showcase the applications of Rh NPs with tunable sizes and shapes. Finally, we make some perspectives for the further research trends and development of Rh NPs. We hope through this reviewing effort, one can easily understand the technical bases for effectively designing and producing Rh NPs with desired properties

    Interfacial Pd-O-Ce Linkage Enhancement Boosting Formic Acid Electrooxidation

    No full text
    Metal-support interaction enhancement is critical in the fuel cell catalyst design and fabrication. Herein, taking the Pd@CeO2 system as an example, we revealed the substrate morphology coupling effect and the thermal annealing-induced Pd-O-Ce linkage enhancement in the improved catalytic capability for formic acid electrooxidation. Three well-defined CeO2 nanocrystals were employed to support Pd nanoparticles, and the best catalytic performance for formic acid oxidation and anti-CO poisoning ability was found on CeO2 plates because of the high oxygen vacancy, Ce3+, and more Pd-O-Ce linkages resulting from the more edge/corner defects. This interaction of Pd-O-Ce linkages could be largely enhanced by thermal annealing in the N-2 atmosphere, as confirmed by a series of crystal structures, surface chemical state, and Raman analysis because the oxygen vacancies and lattice oxygen resulting from the oxygen atoms leaching from the CeO2 lattice would trap the mobile Pd nanocrystals by forming strengthened Pd-O-Ce linkages. Due to the high oxygen vacancy and strong Pd-O-Ce linkages, largely increased catalytic activity and stability, catalytic kinetics, and rapid charge transfer were found for all the thermal annealed Pd@CeO2 catalysts. A nearly 1.93-fold enhancement in the mass activity was achieved on the Pd@CeO2-plate catalysts demonstrating the significance of Pd-O-Ce linkage enhancement. The formation mechanism of Pd-O-Ce linkage was also probed, and a valid Pd-O-Ce linkage can only be formed in the inert atmosphere because of the reaction between metallic Pd and CeO2. This finding sheds some light on the more efficient catalyst interface construction and understanding for the fuel cell catalysis via metal-support interaction enhancement

    Nanocatalysts for Electrocatalytic Oxidation of Ethanol

    No full text
    The use of ethanol as a fuel in direct alcohol fuel cells depends not only on its ease of production from renewable sources, but also on overcoming the challenges of storage and transportation. In an ethanol-based fuel cell, highly active electrocatalysts are required to break the C-C bond in ethanol for its complete oxidation at lower overpotentials, with the aim of increasing the cell performance, ethanol conversion rates, and fuel efficiency. In recent decades, the development of wet-chemistry methods has stimulated research into catalyst design, reactivity tailoring, and mechanistic investigations, and thus, created great opportunities to achieve efficient oxidation of ethanol. In this Minireview, the nanomaterials tested as electrocatalysts for the ethanol oxidation reaction in acid or alkaline environments are summarized. The focus is mainly on nanomaterials synthesized by using wet-chemistry methods, with particular attention on the relationship between the chemical and physical characteristics of the catalysts, for example, catalyst composition, morphology, structure, degree of alloying, presence of oxides or supports, and their activity for ethanol electro-oxidation. As potential alternatives to noble metals, non-noble-metal catalysts for ethanol oxidation are also briefly reviewed. Insights into further enhancing the catalytic performance through the design of efficient electrocatalysts are also provided
    corecore