127 research outputs found

    Pharmacological Study of Phenolic Components in Parkinson's Disease

    Get PDF
    In this study, cell experiments were conducted to investigate the effects of extracts on cell viability and apoptosis of Parkinson model in vitro, as well as the expression of cysteine protease-3 (Caspase-3) and B lymphocytoma-2-associated X protein (BAX). The results showed that extract of phenols could improve the loss of cell viability and apoptosis induced by MPP+, and inhibit the enhanced expression of Bax and Caspase-3 by MPP+. The potential targets and signaling pathways of phenols in the treatment of Parkinson's disease were predicted by network pharmacology

    LLMCad: Fast and Scalable On-device Large Language Model Inference

    Full text link
    Generative tasks, such as text generation and question answering, hold a crucial position in the realm of mobile applications. Due to their sensitivity to privacy concerns, there is a growing demand for their execution directly on mobile devices. Currently, the execution of these generative tasks heavily depends on Large Language Models (LLMs). Nevertheless, the limited memory capacity of these devices presents a formidable challenge to the scalability of such models. In our research, we introduce LLMCad, an innovative on-device inference engine specifically designed for efficient generative Natural Language Processing (NLP) tasks. The core idea behind LLMCad revolves around model collaboration: a compact LLM, residing in memory, takes charge of generating the most straightforward tokens, while a high-precision LLM steps in to validate these tokens and rectify any identified errors. LLMCad incorporates three novel techniques: (1) Instead of generating candidate tokens in a sequential manner, LLMCad employs the smaller LLM to construct a token tree, encompassing a wider range of plausible token pathways. Subsequently, the larger LLM can efficiently validate all of these pathways simultaneously. (2) It employs a self-adjusting fallback strategy, swiftly initiating the verification process whenever the smaller LLM generates an erroneous token. (3) To ensure a continuous flow of token generation, LLMCad speculatively generates tokens during the verification process by implementing a compute-IO pipeline. Through an extensive series of experiments, LLMCad showcases an impressive token generation speed, achieving rates up to 9.3x faster than existing inference engines

    Imaging defects and their evolution in a metal–organic framework at sub-unit-cell resolution

    Get PDF
    © 2019, The Author(s), under exclusive licence to Springer Nature Limited. Defect engineering of metal–organic frameworks (MOFs) offers promising opportunities for tailoring their properties to specific functions and applications. However, determining the structures of defects in MOFs—either point defects or extended ones—has proved challenging owing to the difficulty of directly probing local structures in these typically fragile crystals. Here we report the real-space observation, with sub-unit-cell resolution, of structural defects in the catalytic MOF UiO-66 using a combination of low-dose transmission electron microscopy and electron crystallography. Ordered ‘missing linker’ and ‘missing cluster’ defects were found to coexist. The missing-linker defects, reconstructed three-dimensionally with high precision, were attributed to terminating formate groups. The crystallization of the MOF was found to undergo an Ostwald ripening process, during which the defects also evolve: on prolonged crystallization, only the missing-linker defects remained. These observations were rationalized through density functional theory calculations. Finally, the missing-cluster defects were shown to be more catalytically active than their missing-linker counterparts for the isomerization of glucose to fructose

    Eigenvalues of a Class of Singular Boundary Value Problems of Impulsive Differential Equations in Banach Spaces

    No full text
    This paper is devoted to investigating the eigenvalue problems of a class of nonlinear impulsive singular boundary value problem in Banach spaces: μx′′+f(t,x)=0,t∈(0,1),t≠ti; Δx|t=ti=αix(ti-0),i=1,2,…,k;ax(0)-bx′(0)=θ;cx(1)+dx′(1)=θ, where θ denotes the zero element of Banach space, Δx|t=ti=x(ti+0)-x(ti-0), αi>-1, a,b,c,d∈R+,γ=ac+ad+bc>0, μ is a parameter, and f(t,x) may be singular at t=0,1 and x=θ. The arguments are mainly based upon the theory of fixed point index, measure of noncompactness, and the special cone, which is constructed to overcome the singularity

    New Discussion on Approximate Controllability for Semilinear Fractional Evolution Systems with Finite Delay Effects in Banach Spaces via Differentiable Resolvent Operators

    No full text
    This manuscript mainly discusses the approximate controllability for certain fractional delay evolution equations in Banach spaces. We introduce a suitable complete space to deal with the disturbance due to the time delay. Compared with many related papers on this issue, the major tool we use is a set of differentiable properties based on resolvent operators, rather than the theory of C0-semigroup and the properties of some associated characteristic solution operators. By implementing an iterative method, some new controllability results of the considered system are derived. In addition, the system with non-local conditions and a parameter is also discussed as an extension of the original system. An instance is proposed to support the theoretical results

    Experimental and Numerical Studies of Cloud Cavitation Behavior around a Reversible S-Shaped Hydrofoil

    No full text
    The S-shaped hydrofoil is often used in the design of reversible machinery due to its centrally symmetrical camber line. The objective of this paper is to study the influence of cloud cavitation on the flow structure and the unsteady characteristics of lift and drag around an S-shaped hydrofoil via experimental tests and numerical simulations. In the experimental component, the tests were carried out in a cavitation tunnel and a high-speed camera was used to record the cavitation details around the S-shaped hydrofoil with different cavitation numbers. The experimental results show that sheet cavitation gradually transforms into cloud cavitation with a decrease in the inlet cavitation number, the maximum cavity length increases faster after the occurrence of cloud cavitation, and the shedding cycle time of cloud cavitation gradually increases with a decrease in the inlet cavitation number. In the numerical component, the numerical results are in good agreement with the experimental data. The numerical results show that the movement of the re-entrant jet is the main factor for the formation of the cloud cavitation around the S-shaped hydrofoil. The shedding cloud cavity induces the U-shaped vortex structure around the S-shaped hydrofoil, and it produces a higher vorticity distribution around the cavity. The periodic motion of cloud cavity causes the unsteady fluctuation of the lift–drag coefficient of the S-shaped hydrofoil, and because of the unique pressure distribution characteristics of the S-shaped hydrofoil, the lift and drag coefficient appeared as two peaks in one typical cycle of cloud cavitation
    corecore