34 research outputs found

    Cardiac abnormalities after induction of endoplasmic reticulum stress are associated with mitochondrial dysfunction and connexin43 expression

    Get PDF
    The endoplasmic reticulum (ER) is responsible for protein synthesis and calcium storage. ER stress, reflected by protein unfolding and calcium handling abnormalities, has been studied as a pathogenic factor in cardiovascular diseases. The aim of this study is to examine the effects of ER stress on mechanical and electrophysiological functions in the heart and explore the underlying molecular mechanisms. A total of 30 rats were randomly divided into control, ER stress inducer (tunicamycin[TN]) and ER stress inhibitor (tunicamycin+4-phenylbutyric acid [4-PBA]) groups. ER stress induction led to significantly systolic and diastolic dysfunction as reflected by maximal increasing/decreasing rate of left intraventricular pressure (±dp/dt), left ventricular peaksystolic pressure(LVSP) and LV end-diastolic pressure(LVEDP). Epicardial mapping performed in vivo revealed reduced conduction velocity and increased conduction heterogeneity associated with the development of spontaneous ventricular tachycardia. Masson’s trichrome staining revealed marked fibrosis in the myocardial interstitial and sub-pericardial regions, and thickened epicardium. Western blot analysis revealed increased pro-fibrotic factor transforming growth factor-ÎČ1 (TGF-ÎČ1), decreased mitochondrial biogenesis protein peroxlsome proliferator-activated receptor-Îł coactlvator-1α PGC-1a, and decreased mitochondrial fusion protein mitofusin-2 (MFN2). These changes were associated with mitochondria dysfunction and connexin 43(CX43)translocation to mitochondria. These abnormalities can be partially prevented by the ER stress inhibitor 4-PBA. Our study shows that ER stress induction can produce cardiac electrical and mechanism dysfunction as well as structural remodelling. Mitochondrial function alterations are contributed by CX43 transposition to mitochondria. These abnormalities can be partially prevented by the ER stress inhibitor 4-PBA

    Resveratrol activation of SIRT1/MFN2 can improve mitochondria function, alleviating doxorubicin‐induced myocardial injury

    Get PDF
    Background Doxorubicin is a widely used cytotoxic chemotherapy agent for treating different malignancies. However, its use is associated with dose-dependent cardiotoxicity, causing irreversible myocardial damage and significantly reducing the patient's quality of life and survival. In this study, an animal model of doxorubicin-induced cardiomyopathy was used to investigate the pathogenesis of doxorubicin-induced myocardial injury. This study also investigated a possible treatment strategy for alleviating myocardial injury through resveratrol therapy in vitro. Methods Adult male C57BL/6J mice were randomly divided into a control group and a doxorubicin group. Body weight, echocardiography, surface electrocardiogram, and myocardial histomorphology were measured. The mechanisms of doxorubicin cardiotoxicity in H9c2 cell lines were explored by comparing three groups (phosphate-buffered saline, doxorubicin, and doxorubicin with resveratrol). Results Compared to the control group, the doxorubicin group showed a lower body weight and higher systolic arterial pressure, associated with reduced left ventricular ejection fraction and left ventricular fractional shortening, prolonged PR interval, and QT interval. These abnormalities were associated with vacuolation and increased disorder in the mitochondria of cardiomyocytes, increased protein expression levels of α-smooth muscle actin and caspase 3, and reduced protein expression levels of Mitofusin2 (MFN2) and Sirtuin1 (SIRT1). Compared to the doxorubicin group, doxorubicin + resveratrol treatment reduced caspase 3 and manganese superoxide dismutase, and increased MFN2 and SIRT1 expression levels. Conclusion Doxorubicin toxicity leads to abnormal mitochondrial morphology and dysfunction in cardiomyocytes and induces apoptosis by interfering with mitochondrial fusion. Resveratrol ameliorates doxorubicin-induced cardiotoxicity by activating SIRT1/MFN2 to improve mitochondria function

    NADPH oxidase mediates oxidative stress and ventricular remodeling through SIRT3/FOXO3a pathway in diabetic mice

    Get PDF
    Oxidative stress and mitochondrial dysfunction are important mechanisms of ventricular remodeling, predisposed to the development of diabetic cardiomyopathy (DCM) in type 2 diabetes mellitus. In this study, we have successfully established a model of type 2 diabetes using a high-fat diet (HFD) in combination with streptozotocin (STZ). The mice were divided into three groups of six at random: control, diabetes, and diabetes with apocynin and the H9c2 cell line was used as an in vitro model for investigation. We examined the molecular mechanisms of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation on mitochondrial dysfunction and ventricular remodeling in the diabetic mouse model. Hyperglycemia-induced oxidative stress led to a reduced expression of sirtuin 3 (SIRT3), thereby promoting forkhead box class O 3a (FOXO3a) acetylation in ventricular tissue and H9c2 cells. Reactive oxygen species (ROS) overproduction promoted ventricular structural modeling and conduction defects. These alterations were mitigated by inhibiting NADPH oxidase with the pharmaceutical drug apocynin (APO). Apocynin improved SIRT3 and Mn-SOD expression in H9c2 cells transfected with SIRT3 siRNA. In our diabetic mouse model, apocynin improved myocardial mitochondrial function and ROS overproduction through the recovery of the SIRT3/FOXO3a pathway, thereby reducing ventricular remodeling and the incidence of DCM

    Role of Heat Shock Proteins in Atrial Fibrillation: From Molecular Mechanisms to Diagnostic and Therapeutic Opportunities

    Get PDF
    Heat shock proteins (HSPs) are endogenous protective proteins and biomarkers of cell stress response, of which examples are HSP70, HSP60, HSP90, and small HSPs (HSPB). HSPs protect cells and organs, especially the cardiovascular system, against harmful and cytotoxic conditions. More recent attention has focused on the roles of HSPs in the irreversible remodeling of atrial fibrillation (AF), which is the most common arrhythmia in clinical practice and a significant contributor to mortality. In this review, we investigated the relationship between HSPs and atrial remodeling mechanisms in AF. PubMed was searched for studies using the terms "Heat Shock Proteins" and "Atrial Fibrillation" and their relevant abbreviations up to 10 July 2022. The results showed that HSPs have cytoprotective roles in atrial cardiomyocytes during AF by promoting reverse electrical and structural remodeling. Heat shock response (HSR) exhaustion, followed by low levels of HSPs, causes proteostasis derailment in cardiomyocytes, which is the basis of AF. Furthermore, potential implications of HSPs in the management of AF are discussed in detail. HSPs represent reliable biomarkers for predicting and staging AF. HSP inducers may serve as novel therapeutic modalities in postoperative AF. HSP induction, either by geranylgeranylacetone (GGA) or by other compounds presently in development, may therefore be an interesting new approach for upstream therapy for AF, a strategy that aims to prevent AF whilst minimizing the ventricular proarrhythmic risks of traditional anti-arrhythmic agents

    Circulating Vitamin D Concentrations and Risk of Atrial Fibrillation:A Mendelian Randomization Study Using Non-deficient Range Summary Statistics

    Get PDF
    Vitamin D deficiency is a common disorder and has been linked with atrial fibrillation (AF) in several observational studies, although the causal relationships remain unclear. We conducted a Mendelian randomization (MR) analysis to determine the causal association between serum 25-hydroxyvitamin D [25(OH)D] concentrations and AF. The analyses were performed using summary statistics obtained for single-nucleotide polymorphisms (SNPs) identified from large genome-wide association meta-analyses conducted on serum 25(OH)D ( = 79,366) and AF ( = 1,030,836). Six SNPs related to serum 25(OH)D were used as instrumental variables. The association between 25(OH)D and AF was estimated using both the fixed-effect and random-effects inverse variance weighted (IVW) method. The MR analyses found no evidence to support a causal association between circulating 25(OH)D level and risk of AF using random-effects IVW (odds ratio per unit increase in log 25(OH)D = 1.003, 95% CI, 0.841-1.196; = 0.976) or fixed-effect IVW method (OR = 1.003, 95% CI, 0.876-1.148; = 0.968). Sensitivity analyses yielded similar results. No heterogeneity and directional pleiotropy were detected. Using summary statistics, this MR study suggests that genetically predicted circulating vitamin D concentrations, especially for a non-deficient range, were not causally associated with AF in the general population. Future studies using non-linear design and focusing on the vitamin D deficiency population are needed to further evaluate the causal effect of vitamin D concentrations on AF

    Resveratrol activation of SIRT1/MFN2 can improve mitochondria function, alleviating doxorubicin‐induced myocardial injury

    Get PDF
    Background: Doxorubicin is a widely used cytotoxic chemotherapy agent for treating different malignancies. However, its use is associated with dose‐dependent cardiotoxicity, causing irreversible myocardial damage and significantly reducing the patient's quality of life and survival. In this study, an animal model of doxorubicin‐induced cardiomyopathy was used to investigate the pathogenesis of doxorubicin‐induced myocardial injury. This study also investigated a possible treatment strategy for alleviating myocardial injury through resveratrol therapy in vitro. Methods: Adult male C57BL/6J mice were randomly divided into a control group and a doxorubicin group. Body weight, echocardiography, surface electrocardiogram, and myocardial histomorphology were measured. The mechanisms of doxorubicin cardiotoxicity in H9c2 cell lines were explored by comparing three groups (phosphate‐buffered saline, doxorubicin, and doxorubicin with resveratrol). Results: Compared to the control group, the doxorubicin group showed a lower body weight and higher systolic arterial pressure, associated with reduced left ventricular ejection fraction and left ventricular fractional shortening, prolonged PR interval, and QT interval. These abnormalities were associated with vacuolation and increased disorder in the mitochondria of cardiomyocytes, increased protein expression levels of α‐smooth muscle actin and caspase 3, and reduced protein expression levels of Mitofusin2 (MFN2) and Sirtuin1 (SIRT1). Compared to the doxorubicin group, doxorubicin + resveratrol treatment reduced caspase 3 and manganese superoxide dismutase, and increased MFN2 and SIRT1 expression levels. Conclusion: Doxorubicin toxicity leads to abnormal mitochondrial morphology and dysfunction in cardiomyocytes and induces apoptosis by interfering with mitochondrial fusion. Resveratrol ameliorates doxorubicin‐induced cardiotoxicity by activating SIRT1/MFN2 to improve mitochondria function

    Unlocking High-Efficiency Methane Oxidation with Bimetallic Pd–Ce Catalysts under Zeolite Confinement

    Get PDF
    Catalytic complete oxidation is an efficient approach to reducing methane emissions, a significant contributor to global warming. This approach requires active catalysts that are highly resistant to sintering and water vapor. In this work, we demonstrate that Pd nanoparticles confined within silicalite-1 zeolites (Pd@S-1), fabricated using a facile in situ encapsulation strategy, are highly active and stable in catalyzing methane oxidation and are superior to those supported on the S-1 surface due to a confinement effect. The activity of the confined Pd catalysts was further improved by co-confining a suitable amount of Ce within the S-1 zeolite (PdCe0.4@S-1), which is attributed to confinement-reinforced Pd-Ce interactions that promote the formation of oxygen vacancies and highly reactive oxygen species. Furthermore, the introduction of Ce improves the hydrophobicity of the S-1 zeolite and, by forming Pd-Ce mixed oxides, inhibits the transformation of the active PdO phase to inactive Pd(OH)2 species. Overall, the bimetallic PdCe0.4@S-1 catalyst delivers exceptional outstanding activity and durability in complete methane oxidation, even in the presence of water vapor. This study may provide new prospects for the rational design of high-performance and durable Pd catalysts for complete methane oxidation

    Hear it straight from the horse’s mouth: Policy-induced opportunities, entrepreneurs, and governments

    No full text
    What types of entrepreneurs are more likely to ‘stay tuned’ to government policies and does it pay? Integrating work on opportunity recognition and the institution-based view, this study examines the link between the pursuit of policy-induced opportunities and firm performance. Based on data analysis of 3284 Chinese privately owned firms in 31 regions/provinces in China, we find that entrepreneurs who have past working experience within the government are more likely to stay alert to government policies involving entrepreneurial opportunities, which leads to entrepreneurial activities and ultimately firm performance. This study enriches our understanding of opportunity recognition and development by expanding it to political markets. We assess the role of institutional variation as animportant factor in emerging economies. We unravel the pivotal role of entrepreneurial alertness to government policies on enhancing firm performance by strengthening entrepreneurial activities

    Social Network Spam Detection Based on ALBERT and Combination of Bi-LSTM with Self-Attention

    No full text
    Social networks are full of spams and spammers. Although social network platforms have established a variety of strategies to prevent the spread of spam, strict information review mechanism has given birth to smarter spammers who disguise spam as text sent by ordinary users. In response to this, this paper proposes a spam detection method powered by the self-attention Bi-LSTM neural network model combined with ALBERT, a lightweight word vector model of BERT. We take advantage of ALBERT to transform social network text into word vectors and then input them to the Bi-LSTM layer. After feature extraction and combined with the information focus of the self-attention layer, the final feature vector is obtained. Finally, SoftMax classifier performs classification to obtain the result. We verify the excellence of the model with accuracy, precision, F1-score, etc. The results show that the model has better performance than others

    Role of Heat Shock Proteins in Atrial Fibrillation: From Molecular Mechanisms to Diagnostic and Therapeutic Opportunities

    No full text
    Heat shock proteins (HSPs) are endogenous protective proteins and biomarkers of cell stress response, of which examples are HSP70, HSP60, HSP90, and small HSPs (HSPB). HSPs protect cells and organs, especially the cardiovascular system, against harmful and cytotoxic conditions. More recent attention has focused on the roles of HSPs in the irreversible remodeling of atrial fibrillation (AF), which is the most common arrhythmia in clinical practice and a significant contributor to mortality. In this review, we investigated the relationship between HSPs and atrial remodeling mechanisms in AF. PubMed was searched for studies using the terms “Heat Shock Proteins” and “Atrial Fibrillation” and their relevant abbreviations up to 10 July 2022. The results showed that HSPs have cytoprotective roles in atrial cardiomyocytes during AF by promoting reverse electrical and structural remodeling. Heat shock response (HSR) exhaustion, followed by low levels of HSPs, causes proteostasis derailment in cardiomyocytes, which is the basis of AF. Furthermore, potential implications of HSPs in the management of AF are discussed in detail. HSPs represent reliable biomarkers for predicting and staging AF. HSP inducers may serve as novel therapeutic modalities in postoperative AF. HSP induction, either by geranylgeranylacetone (GGA) or by other compounds presently in development, may therefore be an interesting new approach for upstream therapy for AF, a strategy that aims to prevent AF whilst minimizing the ventricular proarrhythmic risks of traditional anti-arrhythmic agents
    corecore