167,531 research outputs found
Mediating exchange bias by Verwey transition in CoO/Fe3O4 thin film
We report the tunability of the exchange bias effect by the first-order
metal-insulator transition (known as the Verwey transition) of Fe3O4 in CoO (5
nm)/Fe3O4 (40 nm)/MgO (001) thin film. In the vicinity of the Verwey
transition, the exchange bias field is substantially enhanced because of a
sharp increase in magnetocrystalline anisotropy constant from high-temperature
cubic to lowtemperature monoclinic structure. Moreover, with respect to the
Fe3O4 (40 nm)/MgO (001) thin film, the coercivity field of the CoO (5 nm)/Fe3O4
(40 nm)/MgO (001) bilayer is greatly increased for all the temperature range,
which would be due to the coupling between Co spins and Fe spins across the
interface
Neutron Electric Dipole Moment at Fixed Topology
We describe the finite volume effects of CP-odd quantities, such as the
neutron electric dipole moment and the anapole moment in the -vacuum,
under different topological sectors. We evaluate the three-point Green's
functions for the electromagnetic current in a fixed non-trivial topological
sector in order to extract these CP-odd observables. We discuss the role of
zero modes in the CP-odd Green's function and show that, in the quenched
approximation, there is a power divergence in the quark mass for CP-odd
quantities at finite volume.Comment: 12 pages, revised manuscript to be publishe
Two-Level Systems in Evaporated Amorphous Silicon
In -beam evaporated amorphous silicon (-Si), the densities of two-level
systems (TLS), and , determined from specific heat
and internal friction measurements, respectively, have been shown to
vary by over three orders of magnitude. Here we show that and
are proportional to each other with a constant of
proportionality that is consistent with the measurement time dependence
proposed by Black and Halperin and does not require the introduction of
additional anomalous TLS. However, and depend strongly
on the atomic density of the film () which depends on both film
thickness and growth temperature suggesting that the -Si structure is
heterogeneous with nanovoids or other lower density regions forming in a dense
amorphous network. A review of literature data shows that this atomic density
dependence is not unique to -Si. These findings suggest that TLS are not
intrinsic to an amorphous network but require a heterogeneous structure to
form
Verwey transition in FeO thin films: Influence of oxygen stoichiometry and substrate-induced microstructure
We have carried out a systematic experimental investigation to address the
question why thin films of FeO (magnetite) generally have a very broad
Verwey transition with lower transition temperatures as compared to the bulk.
We observed using x-ray photoelectron spectroscopy, x-ray diffraction and
resistivity measurements that the Verwey transition in thin films is
drastically influenced not only by the oxygen stoichiometry but especially also
by the substrate-induced microstructure. In particular, we found (1) that the
transition temperature, the resistivity jump, and the conductivity gap of fully
stoichiometric films greatly depends on the domain size, which increases
gradually with increasing film thickness, (2) that the broadness of the
transition scales with the width of the domain size distribution, and (3) that
the hysteresis width is affected strongly by the presence of antiphase
boundaries. Films grown on MgO (001) substrates showed the highest and sharpest
transitions, with a 200 nm film having a T of 122K, which is close to the
bulk value. Films grown on substrates with large lattice constant mismatch
revealed very broad transitions, and yet, all films show a transition with a
hysteresis behavior, indicating that the transition is still first order rather
than higher order.Comment: 9 pages, 12 figure
Current and fluctuation in a two-state stochastic system under non-adiabatic periodic perturbation
We calculate a current and its fluctuation in a two-state stochastic system
under a periodic perturbation. The system could be interpreted as a channel on
a cell surface or a single Michaelis-Menten catalyzing enzyme. It has been
shown that the periodic perturbation induces so-called pump current, and the
pump current and its fluctuation are calculated with the aid of the geometrical
phase interpretation. We give a simple calculation recipe for the statistics of
the current, especially in a non-adiabatic case. The calculation scheme is
based on the non-adiabatic geometrical phase interpretation. Using the Floquet
theory, the total current and its fluctuation are calculated, and it is
revealed that the average of the current shows a stochastic-resonance-like
behavior. In contrast, the fluctuation of the current does not show such
behavior.Comment: 7 pages, 1 figur
- …