167,531 research outputs found

    Mediating exchange bias by Verwey transition in CoO/Fe3O4 thin film

    Full text link
    We report the tunability of the exchange bias effect by the first-order metal-insulator transition (known as the Verwey transition) of Fe3O4 in CoO (5 nm)/Fe3O4 (40 nm)/MgO (001) thin film. In the vicinity of the Verwey transition, the exchange bias field is substantially enhanced because of a sharp increase in magnetocrystalline anisotropy constant from high-temperature cubic to lowtemperature monoclinic structure. Moreover, with respect to the Fe3O4 (40 nm)/MgO (001) thin film, the coercivity field of the CoO (5 nm)/Fe3O4 (40 nm)/MgO (001) bilayer is greatly increased for all the temperature range, which would be due to the coupling between Co spins and Fe spins across the interface

    Neutron Electric Dipole Moment at Fixed Topology

    Full text link
    We describe the finite volume effects of CP-odd quantities, such as the neutron electric dipole moment and the anapole moment in the θ\theta-vacuum, under different topological sectors. We evaluate the three-point Green's functions for the electromagnetic current in a fixed non-trivial topological sector in order to extract these CP-odd observables. We discuss the role of zero modes in the CP-odd Green's function and show that, in the quenched approximation, there is a power divergence in the quark mass for CP-odd quantities at finite volume.Comment: 12 pages, revised manuscript to be publishe

    Two-Level Systems in Evaporated Amorphous Silicon

    Full text link
    In ee-beam evaporated amorphous silicon (aa-Si), the densities of two-level systems (TLS), n0n_{0} and P‾\overline{P}, determined from specific heat CC and internal friction Q−1Q^{-1} measurements, respectively, have been shown to vary by over three orders of magnitude. Here we show that n0n_{0} and P‾\overline{P} are proportional to each other with a constant of proportionality that is consistent with the measurement time dependence proposed by Black and Halperin and does not require the introduction of additional anomalous TLS. However, n0n_{0} and P‾\overline{P} depend strongly on the atomic density of the film (nSin_{\rm Si}) which depends on both film thickness and growth temperature suggesting that the aa-Si structure is heterogeneous with nanovoids or other lower density regions forming in a dense amorphous network. A review of literature data shows that this atomic density dependence is not unique to aa-Si. These findings suggest that TLS are not intrinsic to an amorphous network but require a heterogeneous structure to form

    Verwey transition in Fe3_{3}O4_{4} thin films: Influence of oxygen stoichiometry and substrate-induced microstructure

    Full text link
    We have carried out a systematic experimental investigation to address the question why thin films of Fe3_3O4_4 (magnetite) generally have a very broad Verwey transition with lower transition temperatures as compared to the bulk. We observed using x-ray photoelectron spectroscopy, x-ray diffraction and resistivity measurements that the Verwey transition in thin films is drastically influenced not only by the oxygen stoichiometry but especially also by the substrate-induced microstructure. In particular, we found (1) that the transition temperature, the resistivity jump, and the conductivity gap of fully stoichiometric films greatly depends on the domain size, which increases gradually with increasing film thickness, (2) that the broadness of the transition scales with the width of the domain size distribution, and (3) that the hysteresis width is affected strongly by the presence of antiphase boundaries. Films grown on MgO (001) substrates showed the highest and sharpest transitions, with a 200 nm film having a TV_V of 122K, which is close to the bulk value. Films grown on substrates with large lattice constant mismatch revealed very broad transitions, and yet, all films show a transition with a hysteresis behavior, indicating that the transition is still first order rather than higher order.Comment: 9 pages, 12 figure

    Current and fluctuation in a two-state stochastic system under non-adiabatic periodic perturbation

    Full text link
    We calculate a current and its fluctuation in a two-state stochastic system under a periodic perturbation. The system could be interpreted as a channel on a cell surface or a single Michaelis-Menten catalyzing enzyme. It has been shown that the periodic perturbation induces so-called pump current, and the pump current and its fluctuation are calculated with the aid of the geometrical phase interpretation. We give a simple calculation recipe for the statistics of the current, especially in a non-adiabatic case. The calculation scheme is based on the non-adiabatic geometrical phase interpretation. Using the Floquet theory, the total current and its fluctuation are calculated, and it is revealed that the average of the current shows a stochastic-resonance-like behavior. In contrast, the fluctuation of the current does not show such behavior.Comment: 7 pages, 1 figur
    • …
    corecore