100 research outputs found

    Multimodal Identification of Alzheimer's Disease: A Review

    Full text link
    Alzheimer's disease is a progressive neurological disorder characterized by cognitive impairment and memory loss. With the increasing aging population, the incidence of AD is continuously rising, making early diagnosis and intervention an urgent need. In recent years, a considerable number of teams have applied computer-aided diagnostic techniques to early classification research of AD. Most studies have utilized imaging modalities such as magnetic resonance imaging (MRI), positron emission tomography (PET), and electroencephalogram (EEG). However, there have also been studies that attempted to use other modalities as input features for the models, such as sound, posture, biomarkers, cognitive assessment scores, and their fusion. Experimental results have shown that the combination of multiple modalities often leads to better performance compared to a single modality. Therefore, this paper will focus on different modalities and their fusion, thoroughly elucidate the mechanisms of various modalities, explore which methods should be combined to better harness their utility, analyze and summarize the literature in the field of early classification of AD in recent years, in order to explore more possibilities of modality combinations

    Associations between Aerosol Types and Chlorophyll-a Concentration over Coastal Area in East Asia from Satellite Observations

    Get PDF
    This study improved significantly the relationship between aerosol optical depth (AOD) and sea surface chlorophyll-a concentration (Chl-a), after considering the effects of sea surface temperature (SST), ocean surface current (OSC) and type of aerosols. The decadal satellite-retrieved Orbview-2/SeaWiFS Chl-a and Terra/MODIS AOD550nm data (from March 2000 to December 2010) were used to investigate the impact of atmospheric aerosols on the Chl-a concentration in the coastal water around the region of East Asia (equator to 75°N and from 100°E to 180°E). Two sets of sequential areas (A1 to A10 and B1 to B9) were selected for examining and excluding the influence of SST and OSC. After taking the potential location of aerosol deposition from OSC into account, an obvious correlation between AOD550nm and Chl-a concentration was demonstrated around the site of study area A. For aerosol partition, the Normalized Gradient Aerosol Index (NGAI) was applied to MODIS AOD products for aerosol type identification and mixed status determination. The results indicated that the type of mineral dust (DS) significantly increases the Chl-a while the biomass burning (BB) aerosols may restrain the Chl-a. This seems to be a non-impact of anthropogenic pollutant (AP) on Chl-a within the surface layer. The other area, B (B1 to B9), next to the region of area A, also shows similar results with high consistency; thus, the significant impact of DS aerosols on Chl-a production is suggested over the coastal region of East Asia

    Effects of transport on a biomass burning plume from Indochina during EMeRGe-Asia identified by WRF-Chem

    Get PDF
    The Indochina biomass burning (BB) season in springtime has a substantial environmental impact on the surrounding areas in Asia. In this study, we evaluated the environmental impact of a major long-range BB transport event on 19 March 2018 (a flight of the High Altitude and Long Range Research Aircraft (HALO; https://www.halo-spp.de, last access: 14 February 2023) research aircraft, flight F0319) preceded by a minor event on 17 March 2018 (flight F0317). Aircraft data obtained during the campaign in Asia of the Effect of Megacities on the transport and transformation of pollutants on the Regional to Global scales (EMeRGe) were available between 12 March and 7 April 2018. In F0319, results of 1 min mean carbon monoxide (CO), ozone (O3_3), acetone (ACE), acetonitrile (ACN), organic aerosol (OA), and black carbon aerosol (BC) concentrations were up to 312.0, 79.0, 3.0, and 0.6 ppb and 6.4 and 2.5 µg m3^{−3}, respectively, during the flight, which passed through the BB plume transport layer (BPTL) between the elevation of 2000–4000 m over the East China Sea (ECS). During F0319, the CO, O3_3, ACE, ACN, OA, and BC maximum of the 1 min average concentrations were higher in the BPTL by 109.0, 8.0, 1.0, and 0.3 ppb and 3.0 and 1.3 µg m3^{−3} compared to flight F0317, respectively. Sulfate aerosol, rather than OA, showed the highest concentration at low altitudes (<1000 m) in both flights F0317 and F0319 resulting from the continental outflow in the ECS. The transport of BB aerosols from Indochina and its impacts on the downstream area were evaluated using a Weather Research Forecasting with Chemistry (WRF-Chem) model. The modeling results tended to overestimate the concentration of the species, with examples being CO (64 ppb), OA (0.3 µg m3^{−3}), BC (0.2 µg m3^{−3}), and O3_3 (12.5 ppb) in the BPTL. Over the ECS, the simulated BB contribution demonstrated an increasing trend from the lowest values on 17 March 2018 to the highest values on 18 and 19 March 2018 for CO, fine particulate matter (PM2.5_{2.5}), OA, BC, hydroxyl radicals (OH), nitrogen oxides (NOx_x), total reactive nitrogen (NOy_y), and O3_3; by contrast, the variation of J(O1^1D) decreased as the BB plume\u27s contribution increased over the ECS. In the lower boundary layer (<1000 m), the BB plume\u27s contribution to most species in the remote downstream areas was <20 %. However, at the BPTL, the contribution of the long-range transported BB plume was as high as 30 %–80 % for most of the species (NOy_y, NOx_x, PM2.5_{2.5}, BC, OH, O3_3, and CO) over southern China (SC), Taiwan, and the ECS. BB aerosols were identified as a potential source of cloud condensation nuclei, and the simulation results indicated that the transported BB plume had an effect on cloud water formation over SC and the ECS on 19 March 2018. The combination of BB aerosol enhancement with cloud water resulted in a reduction of incoming shortwave radiation at the surface in SC and the ECS by 5 %–7 % and 2 %–4 %, respectively, which potentially has significant regional climate implications

    Dual Supramolecular Nanoparticle Vectors Enable CRISPR/Cas9-Mediated Knockin of Retinoschisin 1 Gene-A Potential Nonviral Therapeutic Solution for X-Linked Juvenile Retinoschisis.

    Get PDF
    The homology-independent targeted integration (HITI) strategy enables effective CRISPR/Cas9-mediated knockin of therapeutic genes in nondividing cells in vivo, promising general therapeutic solutions for treating genetic diseases like X-linked juvenile retinoschisis. Herein, supramolecular nanoparticle (SMNP) vectors are used for codelivery of two DNA plasmids-CRISPR-Cas9 genome-editing system and a therapeutic gene, Retinoschisin 1 (RS1)-enabling clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (CRISPR/Cas9) knockin of the RS1 gene with HITI. Through small-scale combinatorial screenings, two SMNP vectors, with Cas9 and single guide RNA (sgRNA)-plasmid in one and Donor-RS1 and green fluorescent protein (GFP)-plasmid in the other, with optimal delivery performances are identified. These SMNP vectors are then employed for CRISPR/Cas9 knockin of RS1/GFP genes into the mouse Rosa26 safe-harbor site in vitro and in vivo. The in vivo study involves intravitreally injecting the two SMNP vectors into the mouse eyes, followed by repeated ocular imaging by fundus camera and optical coherence tomography, and pathological and molecular analyses of the harvested retina tissues. Mice ocular organs retain their anatomical integrity, a single-copy 3.0-kb RS1/GFP gene is precisely integrated into the Rosa26 site in the retinas, and the integrated RS1/GFP gene is expressed in the retinas, demonstrating CRISPR/Cas9 knockin of RS1/GFP gene

    Porcine circovirus type 2 (PCV2) induces cell proliferation, fusion, and chemokine expression in swine monocytic cells in vitro

    Get PDF
    Granulomatous lymphadenitis is one of the pathognomonic lesions in post-weaning multisystemic wasting syndrome (PMWS)-affected pigs. This unique lesion has not been reported in direct association with viral infection in pigs. The objective of the present study was to evaluate whether porcine circovirus type 2 (PCV2) alone is able to induce functional modulation in porcine monocytic cells in vitro to elucidate its possible role in the development of granulomatous inflammation. It was found that the proliferation activity of blood monocytes (Mo) and monocyte-derived macrophages (MDM) was significantly enhanced by PCV2. During monocyte-macrophage differentiation, the PCV2 antigen-containing rate and formation of multinucleated giant cells (MGC) were significantly increased in MDM when compared to those in Mo. The MDM-derived MGC displayed a significantly higher PCV2 antigen-containing rate than did the mono-nucleated MDM. Supernatants from PCV2-inoculated MDM at 24 h post-inoculation induced an increased tendency of chemotactic activity for blood Mo. At the same inoculation time period, levels of mRNA expression of the monocytic chemokines, monocyte chemoattractant protein-1 and macrophage inflammatory protein-1, also significantly increased in PCV2-inoculated MDM. The results suggest that PCV2 alone may induce cell proliferation, fusion, and chemokine expression in swine monocytic cells. Thus, PCV2 itself may play a significant role in the induction of granulomatous inflammation in PMWS-affected pigs

    Identification of Potent EGFR Inhibitors from TCM Database@Taiwan

    Get PDF
    Overexpression of epidermal growth factor receptor (EGFR) has been associated with cancer. Targeted inhibition of the EGFR pathway has been shown to limit proliferation of cancerous cells. Hence, we employed Traditional Chinese Medicine Database (TCM Database@Taiwan) (http://tcm.cmu.edu.tw) to identify potential EGFR inhibitor. Multiple Linear Regression (MLR), Support Vector Machine (SVM), Comparative Molecular Field Analysis (CoMFA), and Comparative Molecular Similarities Indices Analysis (CoMSIA) models were generated using a training set of EGFR ligands of known inhibitory activities. The top four TCM candidates based on DockScore were 2-O-caffeoyl tartaric acid, Emitine, Rosmaricine, and 2-O-feruloyl tartaric acid, and all had higher binding affinities than the control Iressa®. The TCM candidates had interactions with Asp855, Lys716, and Lys728, all which are residues of the protein kinase binding site. Validated MLR (r² = 0.7858) and SVM (r² = 0.8754) models predicted good bioactivity for the TCM candidates. In addition, the TCM candidates contoured well to the 3D-Quantitative Structure-Activity Relationship (3D-QSAR) map derived from the CoMFA (q² = 0.721, r² = 0.986) and CoMSIA (q² = 0.662, r² = 0.988) models. The steric field, hydrophobic field, and H-bond of the 3D-QSAR map were well matched by each TCM candidate. Molecular docking indicated that all TCM candidates formed H-bonds within the EGFR protein kinase domain. Based on the different structures, H-bonds were formed at either Asp855 or Lys716/Lys728. The compounds remained stable throughout molecular dynamics (MD) simulation. Based on the results of this study, 2-O-caffeoyl tartaric acid, Emitine, Rosmaricine, and 2-O-feruloyl tartaric acid are suggested to be potential EGFR inhibitors.National Science Council of Taiwan (NSC 99-2221-E-039-013-)Committee on Chinese Medicine and Pharmacy (CCMP100-RD-030)China Medical University (CMU98-TCM)China Medical University (CMU99-TCM)China Medical University (CMU99-S-02)China Medical University (CMU99-ASIA-25)China Medical University (CMU99-ASIA-26)China Medical University (CMU99-ASIA-27)China Medical University (CMU99-ASIA-28)Asia UniversityTaiwan Department of Health. Clinical Trial and Research Center of Excellence (DOH100-TD-B-111-004)Taiwan Department of Health. Cancer Research Center of Excellence (DOH100-TD-C-111-005

    Analisis Probability Distribution Function Terhadap Perubahan Tutupan Lahan Dan Fraksi Awan Di Indonesia

    No full text
    Land use exceeds the standard of suitability and availability over Indonesia, which causes uncontrolled land acquisitions every year. Changes in land use can be controlled by monitoring changes in land cover and the effect of land changes on hydrological cycle components such as cloud fraction. The land cover and cloud fraction distribution were identified using the NDVI index and cloud fraction parameters. The NDVI index value in Indonesia is 0.73 to 0.81, representing land cover in Indonesia, which is relatively high. Meanwhile, the cloud fraction showed the lowest value between 0.6 to 0.7 in summer and experienced the highest cloud cover at the peak of the rainy season. The analysis of the distribution of both land cover and cloud cover shows the consistency of value stability in the rainy season starting from November to May from 2003 to 2016. The correlation value based on the spatial analysis between the NDVI anomaly and the cloud fraction parameter anomaly has a value range of around -0. 8 to 0.8. The correlation between the NDVI anomaly and the cloud parameter anomaly has a negative correlation in Indonesia, including Sumatra, Kalimantan, Java and Bali, Sulawesi, Nusa Tenggara, Maluku, and Papua. Sumatra, Kalimantan, and Papua islands have a prominent role with a negative correlation between the NDVI anomaly and the cloud fraction parameter anomaly. It is feared to be caused by changes in land use to deforestation of natural area conservation areas into oil palm plantations and mining

    Evaluation and Application of Satellite Precipitation Products in Studying the Summer Precipitation Variations over Taiwan

    No full text
    In March 2019, Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (IMERG)-Final v6 (hereafter IMERG6) was released, with data concerning precipitation dating back to June 2000. The National Aeronautics and Space Administration (NASA) has suggested that researchers use IMERG6 to replace the frequently used Tropical Rainfall Measuring Mission (TRMM)-3B42 v7 (hereafter TRMM7), which is expected to cease operation in December 2019. This study aims to evaluate the performance of IMERG6 and TRMM7 in depicting the variations of summer (June, July, and August) precipitation over Taiwan during the period 2000&ndash;2017. Data used for the comparison also includes IMERG-Final v5 (hereafter IMERG5) and Global Satellite Mapping of Precipitation for Global Precipitation Measurement (GSMaP)-Gauge v7 (hereafter GSMaP7) during the summers of 2014&ndash;2017. Capabilities to apply the four satellite precipitation products (SPPs) in studying summer connective afternoon rainfall (CAR) events, which are the most frequently observed weather patterns in Taiwan, are also examined. Our analyses show that when using more than 400 local rain-gauge observations as a reference base for comparison, IMERG6 outperforms TRMM7 quantitatively and qualitatively, more accurately depicting the variations of the summer precipitation over Taiwan at multiple timescales (including mean status, daily, interannual, and diurnal). IMERG6 also performs better than TRMM7 in capturing the characteristics of CAR activities in Taiwan. These findings highlight that using IMERG6 to replace TRMM7 adds value in studying the spatial-temporal variations of summer precipitation over Taiwan. Furthermore, the analyses also indicated that IMERG6 outperforms IMERG5 and GSMaP7 in the examination of most of the features of summer precipitation over Taiwan during 2014&ndash;2017
    corecore