920 research outputs found

    Hall-Effect for Neutral Atoms

    Full text link
    It is shown that polarizable neutral systems can drift in crossed magnetic and electric fileds. The drift velocity is perpendicular to both fields, but contrary to the drif t velocity of a charged particle, it exists only, if fields vary in space or in time. We develop an adiabatic theory of this phenomenon and analyze conditions of its experimental observation. The most proper objects for the observation of this effect are Rydberg atoms. It can be applied for the separation of excited atoms.Comment: RevTex, 4 pages; to be published in Pis'ma v ZhET

    On the discrete spectrum of spin-orbit Hamiltonians with singular interactions

    Full text link
    We give a variational proof of the existence of infinitely many bound states below the continuous spectrum for spin-orbit Hamiltonians (including the Rashba and Dresselhaus cases) perturbed by measure potentials thus extending the results of J.Bruening, V.Geyler, K.Pankrashkin: J. Phys. A 40 (2007) F113--F117.Comment: 10 pages; to appear in Russian Journal of Mathematical Physics (memorial volume in honor of Vladimir Geyler). Results improved in this versio

    APRIL: Active Preference-learning based Reinforcement Learning

    Get PDF
    This paper focuses on reinforcement learning (RL) with limited prior knowledge. In the domain of swarm robotics for instance, the expert can hardly design a reward function or demonstrate the target behavior, forbidding the use of both standard RL and inverse reinforcement learning. Although with a limited expertise, the human expert is still often able to emit preferences and rank the agent demonstrations. Earlier work has presented an iterative preference-based RL framework: expert preferences are exploited to learn an approximate policy return, thus enabling the agent to achieve direct policy search. Iteratively, the agent selects a new candidate policy and demonstrates it; the expert ranks the new demonstration comparatively to the previous best one; the expert's ranking feedback enables the agent to refine the approximate policy return, and the process is iterated. In this paper, preference-based reinforcement learning is combined with active ranking in order to decrease the number of ranking queries to the expert needed to yield a satisfactory policy. Experiments on the mountain car and the cancer treatment testbeds witness that a couple of dozen rankings enable to learn a competent policy

    Caspase-8 and c-FLIPL associate in lipid rafts with NF-kappaB adaptors during T cell activation.

    Get PDF
    Humans and mice lacking functional caspase-8 in T cells manifest a profound immunodeficiency syndrome due to defective T cell antigen receptor (TCR)-induced NF-kappaB signaling and proliferation. It is unknown how caspase-8 is activated following T cell stimulation, and what is the caspase-8 substrate(s) that is necessary to initiate T cell cycling. We observe that following TCR ligation, a small portion of total cellular caspase-8 and c-FLIP(L) rapidly migrate to lipid rafts where they associate in an active caspase complex. Activation of caspase-8 in lipid rafts is followed by rapid cleavage of c-FLIP(L) at a known caspase-8 cleavage site. The active caspase.c-FLIP complex forms in the absence of Fas (CD95/APO1) and associates with the NF-kappaB signaling molecules RIP1, TRAF2, and TRAF6, as well as upstream NF-kappaB regulators PKC theta, CARMA1, Bcl-10, and MALT1, which connect to the TCR. The lack of caspase-8 results in the absence of MALT1 and Bcl-10 in the active caspase complex. Consistent with this observation, inhibition of caspase activity attenuates NF-kappaB activation. The current findings define a link among TCR, caspases, and the NF-kappaB pathway that occurs in a sequestered lipid raft environment in T cells

    miRNAs are essential for the regulation of the PI3K/AKT/FOXO pathway and receptor editing during B cell maturation

    Get PDF
    B cell development is a tightly regulated process dependent on sequential rearrangements of immunoglobulin loci that encode the antigen receptor. To elucidate the role of microRNAs (miRNAs) in the orchestration of B cell development, we ablated all miRNAs at the earliest stage of B cell development by conditionally targeting the enzymes critical for RNAi in early B cell precursors. Absence of any one of these enzymes led to a block at the pro- to pre-B cell transition due to increased apoptosis and a failure of pre-B cells to proliferate. Expression of a Bcl2 transgene allowed for partial rescue of B cell development, however, the majority of the rescued B cells had low surface immunoglobulin expression with evidence of ongoing light chain editing. Our analysis revealed that miRNAs are critical for the regulation of the PTEN-AKT-FOXO1 pathway that in turn controls Rag expression during B cell development

    A limit model for thermoelectric equations

    Full text link
    We analyze the asymptotic behavior corresponding to the arbitrary high conductivity of the heat in the thermoelectric devices. This work deals with a steady-state multidimensional thermistor problem, considering the Joule effect and both spatial and temperature dependent transport coefficients under some real boundary conditions in accordance with the Seebeck-Peltier-Thomson cross-effects. Our first purpose is that the existence of a weak solution holds true under minimal assumptions on the data, as in particular nonsmooth domains. Two existence results are studied under different assumptions on the electrical conductivity. Their proofs are based on a fixed point argument, compactness methods, and existence and regularity theory for elliptic scalar equations. The second purpose is to show the existence of a limit model illustrating the asymptotic situation.Comment: 20 page

    Green's functions for parabolic systems of second order in time-varying domains

    Full text link
    We construct Green's functions for divergence form, second order parabolic systems in non-smooth time-varying domains whose boundaries are locally represented as graph of functions that are Lipschitz continuous in the spatial variables and 1/2-H\"older continuous in the time variable, under the assumption that weak solutions of the system satisfy an interior H\"older continuity estimate. We also derive global pointwise estimates for Green's function in such time-varying domains under the assumption that weak solutions of the system vanishing on a portion of the boundary satisfy a certain local boundedness estimate and a local H\"older continuity estimate. In particular, our results apply to complex perturbations of a single real equation.Comment: 25 pages, 0 figur
    corecore