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The adaptive immune system is dependent on functionally distinct lineages of T  cell 
antigen receptor αβ-expressing T cells that differentiate from a common progenitor in 
the thymus. CD4+CD8+ progenitor thymocytes undergo selection following interaction 
with MHC class I and class II molecules bearing peptide self-antigens, giving rise to 
CD8+ cytotoxic and CD4+ helper or regulatory T cell lineages, respectively. The strict 
correspondence of CD4 and CD8 expression with distinct cellular phenotypes has made 
their genes useful surrogates for investigating molecular mechanisms of lineage commit-
ment. Studies of Cd4 and Cd8 transcriptional regulation have uncovered cis-regulatory 
elements that are critical for mediating epigenetic modifications at distinct stages of 
development to establish heritable transcriptional programs. In this review, we examine 
the epigenetic mechanisms involved in Cd4 and Cd8 gene regulation during T cell lineage 
specification and highlight the features that make this an attractive system for uncovering 
molecular mechanisms of heritability.

Keywords: DNA methyltransferase, ten eleven translocation enzymes, T cell development, gene silencing, RUNX3, 
Runx1, T helper inducing POZ/Krueppel-like factor, TCF transcription factors

iNTRODUCTiON

Conrad Waddington first coined the term “epigenetics” to refer to the study of the causal mechanisms 
connecting genotype with phenotype (1). It is well established that distinct cellular phenotypes in 
a multicellular organism arise from differences in gene regulation and not heterogeneity in DNA 
sequence. Gene expression patterns are preserved through cell division by heritable modifications of 
DNA and chromatin that expand the Watson–Crick base pairing information content of the genome. 
These adaptations comprise the “epigenetic landscape” crucial to cell lineage specification, depicted 
by Waddington as a marble rolling downhill into one of several furrows representing differentiated 
cell types (2). Early cytological studies distinguished heterochromatin that remained condensed 
throughout the cell cycle from euchromatin that had a diffuse appearance during interphase (3). 
Heterochromatin is generally tightly packed and transcriptionally quiescent. It can be further clas-
sified as constitutive heterochromatin composed of repetitive sequence elements such as telomeres 
and centromeres and facultative heterochromatin composed of genes that become silenced through 

Abbreviations: E4M, maturity enhancer; E4P, proximal enhancer; S4, silencer; E4D, distal enhancer; E4T, thymocyte enhancer; 
Thpok, T helper inducing POZ/Krueppel-like factor; DNMT, DNA methyltransferase; MDB, methyl-CpG-binding domain; 
TET, ten eleven translocation; 5mC, 5-methyl cytosine; 5hC, 5-hydroxymethyl cytosine; HAT, histone acetyltransferase; HDAC, 
histone deacetylase enzyme; HP1, heterochromatin protein 1; DP, double positive; DN, double negative; CD4 SP, CD4 single 
positive; CD8 SP, CD8 single positive; Tcf1, T cell factor 1; Lef1, lymphoid enhancer factor 1; BAF, Brg/Brahma-associated 
factors; Uhrf1, ubiquitin like with PHD and ring finger domains 1; NuRD, nucleosome remodeling and histone deacetylase; 
AP4, adaptor-related protein complex 4.
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developmental cues (4). In contrast, actively transcribed genes 
are typically located in accessible euchromatin. We are now 
beginning to understand the epigenetic processes that underlie 
heritable gene expression programs and characterize the physi-
cal properties of heterochromatin and euchromatin. Epigenetic 
mechanisms act on DNA and histones, both of which can be 
modified to regulate gene expression, such as by covalent histone 
linkages or methylation of cytosines in DNA [5-methyl cytosine 
(5mC)]. The combinatorial output of these marks provides a rich 
and diverse template for the development of distinct tissues and 
cell lineages, and in the era of genomics and computational biol-
ogy, we are beginning to characterize the “epigenetic landscape” 
driving gene expression. In contrast to epigenetic changes that 
can occur during plastic stages of differentiation, the epigenetic 
programs controlling irreversible cell fate choices are key to 
understand the mechanisms of heritability. As we discuss below, 
in vertebrates, development of T cells expressing αβ T cell antigen 
receptors (TCRs) is a tractable system to study the epigenetic 
mechanisms of bi-potential cell fate decisions and the main-
tenance of gene expression states in differentiated cells. With 
ordered stages of maturation and defined molecular checkpoints 
at each stage, αβ T  cell development provides an opportunity 
to study how chromatin changes drive gene expression during 
differentiation of a somatic tissue in adult animals. Furthermore, 
the study of CD4 and CD8, surface receptors whose expression 
corresponds to distinct T cell fates, has led to new insights into 
epigenetic inheritance.

T CeLL DeveLOPMeNT AS A MODeL FOR 
ePiGeNeTiC GeNe ReGULATiON

T cell development begins when common lymphoid precursors 
from the bone marrow or fetal liver migrate through the blood 
to seed the thymus. Expression of the surface glycoproteins CD4 
and CD8 distinguishes developmental stages of αβ T cells, with 
the most immature thymocytes being double negative (DN) for 
CD4 and CD8. Productive (in frame) VDJ recombination at the 
locus encoding the TCRβ chain is followed by assembly and 
signaling of the pre-TCR, which is composed of the beta chain 
paired with a germline-encoded pre-TCRα polypeptide. The 
signal induces robust proliferation and marks the passage of cells 
with productive rearrangements of their TCRβ chain genes, a 
process known as β-selection, to the next stage of development. 
This stage is characterized by upregulation of both CD4 and CD8, 
yielding double-positive (DP) thymocytes, and by rearrangement 
of the locus encoding the TCRα chain through VJ recombination. 
DP thymocytes that signal through sufficiently strong avidity 
interactions of their rearranged TCR with self-peptide/MHC 
molecules are positively selected, with CD4 and CD8 facilitat-
ing TCR signaling through their roles as co-receptors for MHC 
class II and MHC class I, respectively. Positive selection of cells 
with TCRs specific for MHC class II leads to the development 
of CD4+ single-positive (SP) thymocytes, composed of not 
only largely T helper cells but also some regulatory T cells with 
relatively high affinity TCRs. Conversely, thymocytes with TCRs 
that interact with MHC class I differentiate into CD8+ cytotoxic 

T  cells. Meanwhile, cells with excessive TCR-MHC affinity are 
eliminated by negative selection to limit the release of autoreac-
tive lymphocytes into the periphery.

There is a striking correspondence of co-receptor expression 
and commitment to functionally distinct lineages, indicating that 
regulation of CD4 and CD8 expression is linked to the functional 
programs of the developing T cells. This observation forms the 
basis of most models for lineage commitment, including the cur-
rent kinetic signaling model (5, 6). The kinetic signaling model 
posits that as CD8 is downregulated following positive selection, 
leading to a CD4+CD8lo phenotype, continued CD4 co-receptor 
expression allows for prolonged or stronger MHC class II-TCR 
signaling, inducing the helper T cell fate (7). Meanwhile, com-
mon gamma chain cytokines such as IL-7 rescue cells that have 
received an interrupted MHC class I signal and induce CD8 
co-receptor reversal and the cytotoxic phenotype. “Top-down” 
studies of proximal TCR signaling have yielded little insight into 
how recognition of different types of MHC molecules results in 
distinct transcriptional programs. For this reason, and because 
of the intimate link between co-receptor expression and lineage 
commitment, “bottom-up” studies of Cd4 and Cd8 locus regula-
tion have been undertaken as a way toward identifying signaling 
differences between the lineages. These studies have character-
ized an extensive transcriptional network that includes T helper 
inducing POZ/Krueppel-like factor (Thpok), Runx3, Mazr, Tcf1, 
and lymphoid enhancer factor 1 (Lef1) (8–10). Thpok and Runx3 
are required for thymocytes to commit to the CD4 and CD8 line-
ages, respectively. Antagonistic cross-regulation between Thpok 
and Runx3 is essential to drive helper versus cytotoxic lineage 
choice, whereby Runx complexes limit the Thpok expression to 
MHC class II selected cells and Thpok represses Runx3 expres-
sion during differentiation toward CD4+ T cells. However, these 
transcription factors differ in their abilities to “redirect” cells so 
that they adopt the wrong fate following TCR–MHC interac-
tion (11). Additional transcription factors also have important 
roles in lineage specification or the activation of lineage-specific 
genes, even if they do not directly control lineage commitment or 
repress genes of the wrong lineage (12). For example, GATA3 is 
required for the specification of thymocytes to the CD4 lineage, 
controlling expression of Thpok, and also participates with Thpok 
in “locking in” the lineage-specific program of gene expression.

Despite growing knowledge of the key transcription factors 
involved in lineage commitment, the mechanisms by which 
they direct cell fate decisions through epigenetic mechanisms to 
establish heritable programs of gene expression remain largely 
unknown. The study of the transcriptional regulation of the Cd4 
and Cd8 loci, with their exquisite use of regulatory elements and 
key transcription factors to dictate temporal aspects of gene tran-
scription, is slowly unraveling the orchestration of key epigenetic 
processes that subsequently allow for heritable gene expression 
patterns. As we discuss in this review, stage-specific cis elements 
at the Cd4 locus have critical roles in establishing the epigenetic 
marks that allow for heritable transmission of gene states. This 
allows for a clear dissection of how these marks are deposited 
via transcription complexes and what epigenetic marks encode 
heritable information that is transmitted independently of these 
cis elements and transcription factors thereafter. In addition to 
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being a tractable system whereby developmental stages can be 
easily followed, the Cd4 and Cd8 system also offers the potential 
to understand extracellular signaling cues that lead to the chore-
ography of intricate epigenetic processes.

ePiGeNeTiC MeCHANiSMS OF 
HeRiTABLe GeNe eXPReSSiON

DNA Methylation
One of the best-studied epigenetic mechanisms of heritability 
is the covalent modification of cytosine to 5mC, a mark depos-
ited by the DNA methyltransferase (DNMT) enzymes. DNA 
methylation occurs predominantly at cytosine residues that 
are followed by guanine (CpG) in mammalian genomes, and 
about 60–80% of CpGs are methylated in somatic tissues (13). 
The classic model of DNA methylation holds that de novo DNA 
methylation is deposited in the genome by Dnmt3a and Dnmt3b 
along with their non-enzymatic co-regulator Dnmt3L (14, 15). 
Maintenance DNA methylation is carried out by Dnmt1, which 
associates with the replication fork through PCNA and with 
hemimethylated CpGs through the E3 ubiquitin ligase Uhrf1 
during DNA replication (16–18). However, these distinctions 
are not absolute as Dnmt1 has been shown to exhibit de novo 
methyltransferase function, and Dnmt3 can participate in the 
maintenance of methylation marks (19). Also, as discussed later, 
the model of DNA methylation was further revised with the 
discovery of an active enzymatic process of demethylation.

In the 1970s, two laboratories hypothesized that DNA 
methylation could act as a cellular mechanism of transcriptional 
memory through cell division due to the symmetrical nature of 
the CpG dinucleotide (20, 21). Since then, DNA methylation has 
been shown to be critical for genomic imprinting, X chromosome 
inactivation, and long-term repression of mobile genetic elements 
(22). Mechanistically, DNA methylation can lead to gene silenc-
ing by inhibiting the binding of factors that activate transcription 
through the addition of methyl groups in the major groove of the 
double helix or through the recruitment of repressive complexes 
(13). For example, the binding of CTCF, an insulator protein 
involved in the formation of chromosomal domains, is inhibited 
by DNA methylation, allowing enhancer-mediated activation of 
the paternal allele at the imprinted H19/Igf2 locus (23). DNA 
methylation can also mediate gene repression through methyl-
CpG-binding domain proteins that bind to 5mC. Some of these 
proteins such as Mbd2 and Mbd3 have been found to associate 
with the nucleosome remodeling and deacetylase (NuRD) com-
plex (nucleosome remodeling and histone deacetylation), thus 
linking DNA methylation with other epigenetic mechanisms 
such as histone deacetylation and nucleosome positioning (24, 
25). Functions beyond gene silencing have also been reported, 
such as genomic DNA methylation defining introns and exons 
during splicing (26, 27).

Although DNA methylation is a stable epigenetic mark that 
can be propagated across cell divisions, DNA demethylation had 
been observed in different biological contexts (28).

In contrast to passive demethylation, which results in the loss 
of 5mC during successive rounds of replication in the absence 

of DNA methylation maintenance machinery, replication-
independent demethylation processes had also been observed 
invoking the possibility of active enzymatic removal of 5mC 
marks (29). The discovery of the ten eleven translocation (TET) 
family of enzymes that can modify 5mC through iterative oxida-
tion converting 5mC to 5-hydroxymethyl cytosine (5hmC), and 
subsequently to 5-formylcytosine and 5-carboxylcytosine (5caC), 
and the detection of these intermediates in vivo in mammalian 
DNA, were critical in elucidating the mechanism of active DNA 
demethylation (30–32). There are three TET family members in 
mammals (Tet1/2/3), each possessing a core catalytic domain at 
the carboxyl terminus, a double-stranded β-helix fold contain-
ing crucial metal-binding residues, and a CpG DNA-binding 
CXXC domain toward the amino terminus of the protein (33). 
Although Tet1 and Tet3 contain an internal CXXC domain, Tet2 
partners with IDAX, an independent CXXC-containing protein 
(34). Following iterative oxidation of 5mC to 5caC by the TET 
enzymes, unmodified cytosines can be generated via passive 
dilution of the oxidized base or enzymatic removal via thymine 
DNA glycosylase and the base excision repair pathway (35–38).

Histone Modifications
In eukaryotes, DNA is wrapped around an octamer of histones 
composed of two copies of H2A, H2B, H3, and H4. The linker 
histone H1 is present where the DNA enters and exits the core 
nucleosome, and this nucleosome filament can be further 
compacted, facilitating the packing of large eukaryotic genomes 
within the limited space of the nucleus (39). Covalent changes 
in histones through posttranslational modifications (PTMs) are 
critical to epigenetic processes as they can alter chromatin struc-
ture or allow recruitment of activators or repressors of transcrip-
tion (40). Examples of PTMs include acetylation, methylation, 
phosphorylation, ribosylation, and ubiquitination although it is 
unclear whether all of these are self-propagating through cell divi-
sion, a typical criterion of epigenetic processes. One well-studied 
modification is histone acetylation at lysine residues mediated by 
histone acetyltransferases (HATs). Acetylation is typically associ-
ated with gene activation, whereas histone deacetylase enzymes 
(HDACs) that catalyze the hydrolysis of acetyl-lysine residues 
generally result in silencing and chromatin compaction (41–43). 
Histone methylation can also occur on lysine and arginine resi-
dues, and the methylation of distinct lysines on the histone H3 tail 
is associated with either gene silencing or activation. H3K9me2/3 
is a conserved hallmark of heterochromatin among eukaryotes 
and serves as a binding site for heterochromatin protein 1 (HP1) 
family members to facilitate heterochromatin integrity (44). 
Furthermore, H3K9me3 also interacts with the DNA methylation 
machinery, and cooperation between these silencing marks may 
be vital for heritable silencing. For instance, Uhrf1 was found to 
bind H3K9me3 marks and facilitates H3 ubiquitination via its 
RING domain for recruitment of Dnmt1 at the replication fork 
(45–47). Deacetylation of histones can also provide H3 lysine 
substrates for the histone methyltransferase G9a, which also 
facilitates de novo DNA methylation at gene promoters through 
the recruitment of Dnmt3a and Dnmt3b in ES cells (48, 49). 
Interestingly, the histone methyltransferase activity of G9a is dis-
pensable for de novo methylation at G9a-target gene promoters in 
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ES cells (50). A more direct connection between DNA methyla-
tion and H3K9 methylation exists in the fungus Neurospora crassa 
in which the H3 histone methyltransferase dim-5 is required for 
DNA methylation through trimethylation of H3K9 (51). Other 
repressive histone marks include H3K27me2/3, mediated by the 
polycomb group 2 complex (PRC2), modifications associated 
with the silencing of genes during developmental decisions (52, 
53). In contrast to K9/K27 methylation, H3K4 trimethylation 
(H3K4me3) is associated with active promoters, whereas H3K4 
monomethylation (H3K4me1) is often a mark of enhancer 
function (54). H3K4me3 was also suggested to inhibit DNA 
methylation, as the de novo DNA methylation co-factor Dnmt3L 
was blocked from binding methylated H3K4 (55). Several histone 
modifications have also been found to be reversible by enzymes 
such as the histone demethylase Lsd1 that removes monoethyl or 
dimethyl marks from H3K4 (H3K4me1/2) (44).

Non-covalent histone modifications can also impact the state 
of chromatin through changes in nucleosome positioning or 
altered exposure of DNA along the nucleosome through ATP-
dependent nucleosome remodelers. Indeed, nucleosome remod-
elers are critical for chromatin assembly and enable dynamic 
changes in genomic architecture in response to signaling or 
differentiation (56). Many of these complexes can both activate 
and repress transcription, possibly through combinatorial 
assembly of different subunits (57). Their specificity is thought 
to stem from recruitment by histone modifications, transcription 
factors, or DNA methylation, and therefore they have an intimate 
connection to epigenetic processes. Thus, both covalent and non-
covalent histone modifications extend the capacity of chromatin 
to influence gene expression.

Histone variants
Variants of the core histones H2A, H2B, and H3 and the linker 
histone H1 exist and differ from their canonical histone coun-
terparts in primary sequence and expression pattern. In contrast 
to S phase-coupled expression of the canonical histones, histone 
variants are expressed throughout the cell cycle (39). Substitution 
of canonical histones with these variants is thought to modulate 
gene expression by altering the physical properties of nucleosomes 
through changes in PTMs, chromatin structure, or recruitment 
of additional co-activators or repressors (58). Some examples of 
histone variants that have a putative role in transcription include 
the H2A variant H2A.Z, which is enriched at the transcription 
start site (TSS) of active genes, and the H3.1/H3.2 variant H3.3, 
which has been suggested to have roles in both gene activation 
and heterochromatin integrity (59, 60).

Other Modes of epigenetic Regulation
Although epigenetic marks are required for proper regulation of 
gene expression, an area of active interest is the contribution of 
small and long non-coding RNAs (ncRNAs) in directing chroma-
tin modifications. In yeast, plants, and Drosophila, a role for small 
ncRNAs has been implicated in heterochromatin formation, 
which is disrupted upon interference with the RNAi machinery 
(61–63). Whether a similar pathway operates in mammals is still 
unclear as studies using genetic knockout of the endoribonu-
clease Dicer in ES cells, which is required for the biogenesis of 

siRNAs and microRNAs, resulted in different conclusions, with 
one study showing no effect on histone modification or DNA 
methylation status (64, 65). The PIWI-interacting RNA (piRNA) 
pathway has also been demonstrated to regulate heterochromatin 
in Drosophila by directing H3K9 methylation to transcriptionally 
silence transposons and interacting with HP1 (66, 67). In mice, 
the piRNA pathway seems to be required for sequence specific 
de novo methylation of the imprinted Rasgrf1 locus in the male 
germline (68). The epigenetic landscape can also be shaped via 
site-specific chromatin modifications mediated by long ncRNAs 
(lncRNAs). To date, X chromosome inactivation is the canonical 
model for the epigenetic regulation by lncRNAs. The X-inactive-
specific transcript (Xist) is transcribed from the inactive X 
chromosome in female mammalian cells and has been shown to 
mediate silencing of the X chromosome in cis through the direct 
recruitment of PRC2 and YY1 (69, 70). Since the discovery of 
Xist, additional lncRNAs have been implicated in the modula-
tion of epigenetic processes at other loci through interaction with 
chromatin modifiers (71). However, the in vivo functions of many 
lncRNAs have not yet been evaluated.

Taken together, epigenetic changes are dictated by numerous 
mechanisms that work in a combinatorial manner (Figure  1). 
An understanding of how these processes work in combination 
and how they are deployed for heritable transmission of gene 
expression has proven challenging. As we review below, studies 
of Cd4 and Cd8 regulation during lineage commitment may help 
to shape our basic understanding of these processes in a system 
that is highly tractable.

cis eLeMeNTS AND ePiGeNeTiC 
ReGULATiON OF THe Cd4 LOCUS

The dynamic regulation of the CD4 co-receptor during αβT cell 
development is finely controlled via multiple cis-regulatory ele-
ments that were initially revealed by functionally testing DNase I 
hypersensitivity sites (DHSs). Four cis elements were reported to 
direct Cd4 expression in transgenic assays: a silencer (S4) situated 
1 kb downstream of the Cd4 TSS, a proximal enhancer (PE) (E4P), 
a distal enhancer (E4D) situated 13 and 24 kb upstream of the Cd4 
TSS, and a thymocyte enhancer (E4T) mapped 36 kb downstream. 
The in  vivo roles of only three have thus far been assessed by 
targeted deletion of the endogenous locus. E4P and S4 have been 
found to direct expression of Cd4 in αβ T cells, and the thymocyte 
enhancer E4T was found to direct Cd4 expression in lymphoid 
tissu inducer (LTi) cells in the intestine (72, 73). Although E4D 
was reported to drive reporter expression in mature T cell lines, 
its function still remains to be assessed in vivo (74). Recently, an 
intronic enhancer adjacent to S4, ~2 kb downstream of the Cd4 
TSS, which we refer to as E4M, was found to drive CD4 expression 
in αβ T cells and is described further below (Figure 2) (75).

e4P
The E4P element was mapped to a 339  bp region of DNA that 
directed reporter activity in T  cell lines and in  vivo in T  cells 
of transgenic reporter mice (76, 77). Germline targeting of E4P 
prevented CD4 upregulation during the DN–DP transition in 
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the thymus, demonstrating its requirement for CD4 expression 
in preselection DP cells (73). After positive selection, CD4 was 
reexpressed on MHC class II selected cells, although at reduced 
levels compared to wild-type cells. Furthermore, CD4 expression 
was unstable during cell division, as a large proportion of CD4+ 
T  cells in the periphery lost CD4 expression after activation. 
In these cells, H3 acetylation and H3K4Me3 within the Cd4 
locus were also reduced. The loss of H3Ac and H3K4Me3 was 
observed in CD4− DP stage thymocytes, consistent with the loss 
of CD4 expression. To investigate whether E4P was required for 
regulating CD4 expression beyond the DP stage, Cre-mediated 
excision of a conditional allele was performed. In contrast to 
germline deletion, conditional deletion of E4P in mature CD4+ 
T cells did not impair CD4 expression during activation, and the 
levels of H3Ac and H3K4Me3 were similar to wild-type cells. 

This suggested that, during thymic development, E4P modulates 
a stable epigenetic state of the Cd4 locus that can be maintained 
in its absence thereafter.

Sequence analysis and nuclear extract binding studies sug-
gested that the HMG-box transcription factors T  cell factor 1 
(Tcf1)/Lef1 and the basic helix-loop-helix (bHLH) proteins E2A/
HEB bind to motifs within E4P (76, 78). Accordingly, gene tar-
geted inactivation of the genes encoding E2A and HEB impaired 
CD4 expression during the DN–DP transition (79, 80). Similarly, 
mutation of Tcf7 (which encodes Tcf1) also reduced CD4 expres-
sion in DP thymocytes (81). ChIP analyses confirmed that these 
factors bound to E4P, suggesting that they directly promote 
expression of CD4 in DP thymocytes (81, 82). However none of 
these factors is individually required for CD4 expression in DP 
thymocytes, as single deletions do not phenocopy E4P

−/− mice. 
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Interestingly, the NuRD complex, typically associated with 
gene repression, was also implicated in CD4 activation (83). 
Deficiency in mi-2β, an ATPase chromatin remodeling subunit of 
the NuRD complex, led to impaired CD4 upregulation during the 
DN–DP transition (83). mi-2β also bound E4P by ChIP assays and 
co-immunoprecipitated with HEB and the HAT p300, linking 
histone acetylation with factors recruited to E4P. The cooperative 
mechanisms by which these transcription factors drive transcrip-
tion of Cd4 and their contribution to epigenetic programs are yet 
to be assessed.

e4M
The observation that CD4 was re-expressed following posi-
tive selection in E4P

−/− thymocytes suggested the existence of 
another regulatory element, now referred to as the “maturation 
enhancer,” E4M. The existence of such an element was also sup-
ported by a previous study employing a Cd4 transgene contain-
ing the Cd4 first intron, promoter, and E4P element, whereby 
transgenic reporter activity was lost in activated mature T cells 
without changes in endogenous Cd4 expression (84). Indeed, our 
recent ATAC-seq analysis of the Cd4 locus in CD4SP thymocytes 
revealed a previously uncharacterized chromatin-accessible 
region situated in the first intron of the gene, 3′ to the silencer 
(Priya D. A. Issuree and Dan R. Littman, unpublished results). 
The potential role of this region was highlighted by Egawa and 
colleagues, who showed that CD4 expression was unstable in 
T cells from mice with targeted deletion of 1.5 kb encompassing 
the silencer and the region 3′ to it, but was stable when only 
the core silencer was deleted (75). Our studies using mice lack-
ing E4M revealed that this element controls Cd4 expression in 

postselected CD4SP thymocytes, and in the absence of both E4M 
and E4P, there is a complete loss of CD4 in T cells (Priya D. A. 
Issuree and Dan R. Littman, unpublished results). As observed 
in the absence of E4P, deletion of E4M resulted in the gradual 
loss of CD4 expression by activated CD4+ T cells following mul-
tiple rounds of cell division [(75) Priya D. A. Issuree and Dan 
R. Littman, unpublished results]. Analogous to E4P, retroviral 
Cre-mediated excision of this region in mature T cells did not 
diminish CD4 expression, suggesting that E4M may be required 
for establishing an epigenetically active state during develop-
ment. However, it remains possible that both enhancers function 
cooperatively in the establishment of stable CD4 expression and 
are insufficient to do so individually. Importantly, these studies 
demonstrate that the main enhancers dictating CD4 expression 
in αβ T cells are E4P and E4M, and no additional elements are 
capable of compensating for their loss. The minimal region 
encompassing E4M activity and the transacting factors recruited 
there to drive expression are currently under investigation. It 
also remains to be determined whether the lack of E4M without 
a larger intronic deletion results in redirection of MHC class II 
selected cells into the CD8+ lineage, as was observed in mice with 
the 1.5-kb intronic deletion (75).

Cd4 Silencer (S4)
The silencer (S4) is a 434 bp core element in the first intron of 
Cd4 that was identified by its ability to inhibit expression from 
reporter constructs in cell lines and in both DN thymocytes 
and CD8+ T  cells of transgenic mice (77, 85). Deletion of this 
element in the germline of mice caused CD4 derepression in 
DN thymocytes and CD8+ cytotoxic T  cells, confirming its 
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physiological function (86, 87). Importantly, Cre-mediated 
excision of a conditional LoxP-flanked S4 allele in mature CD8+ 
T cells did not reverse CD4 repression (87). The results demon-
strated that S4 activity is reversible during the DN–DP transition, 
but becomes irreversible following positive selection, in mature 
cytotoxic T cells. Therefore, CD4 silencing in peripheral cytotoxic 
T cells is independent of S4 and mediated by a heritable silencing 
mechanism after CD8+ lineage commitment. To determine when 
S4-independent repression occurred, stage-specific S4 deletion 
with different Cre transgenic mice was carried out. By using CD4-
Cre, which drives Cre expression in the late DN and early DP 
stages of development, DN thymocyte repression was intact but 
mature CD8+ T cells derepressed CD4 similarly to the germline 
deletion (87). S4 deletion with CD8-E8I Cre, which is active only 
in MHC class I-selected T cells, also caused CD4 derepression, 
suggesting that heritable Cd4 silencing occurs after positive selec-
tion. Deletion of S4 at additional stages after MHC class I-positive 
selection may provide more insight into the initiation of heritable 
CD4 silencing.

In contrast to uniform CD4 derepression in S4−/− mice, 
variegated CD4 derepression occurred with smaller deletions in 
S4 (88). This phenotype was reminiscent of position-effect var-
iegation (PEV) studied extensively in Drosophila. PEV occurs 
when a gene is stochastically silenced in a population of cells 
due to spreading of heterochromatin from an adjacent locus 
(89). In agreement with the spreading of heterochromatin, CD4 
repression was stable in cells that achieved silencing and the 
frequency of repression could be increased by overexpressing 
HP1β in  vivo (88). There was no variegation observed in DN 
cells in which CD4 derepression occurred following mutations 
in S4. Instead, there was a partial but uniform derepression, con-
sistent with active repression and the contribution of multiple 
transcription factor binding sites toward this process (88). Motif 
analysis revealed two sites in S4 that contained consensus bind-
ing motifs for members of the evolutionarily conserved family 
of Runx transcription factors (see Runx) (90). Deletion of both 
sites caused CD4 derepression in CD8+ T cells, and interaction 
between S4 and the Runt domain of Runx1 was found in a yeast-
one-hybrid screen (91). Runx1 is expressed at the highest level 
in DN thymocytes, whereas Runx3 is predominantly expressed 
in CD8SP cells. Consistent with their expression pattern, loss 
of function studies demonstrated that Runx1 is indispensable 
for active repression of Cd4 in DN thymocytes, whereas Runx3 
is responsible for establishing Cd4 silencing in CD8+ T  cells 
(91–94). Interestingly, deficiency in the nucleosome remodeling 
Brg/Brahma-associated factor (BAF) complex was also reported 
to cause CD4 derepression in DN thymocytes (82). Combining 
BAF deficiency with point mutants in S4 significantly enhanced 
CD4 derepression, and BAF subunits were found to bind S4 (82). 
The BAF complex was subsequently implicated in regulating S4 
accessibility for Runx1 binding in DN thymocytes (95). Finally, 
the zinc finger transcription factor Ikaros, which associates 
with BAF and other chromatin remodeling complexes, was also 
found to be required for CD4 repression in DN thymocytes (96). 
Active repression of CD4 hence appears to require remodeling 
of the locus and binding of Runx1, which is discussed further 
below (Figure 3).

S4 deletion increased recruitment of HAT p300 at E4P and 
increased H3K9Ac at the promoter in DN thymocytes (93). 
Although E4P is 13 kb upstream of the Cd4 promoter, these ele-
ments have been suggested to physically communicate through 
looping (97). Chromatin conformation capture assays suggested 
that in DN thymocytes, Runx1 mediates a loop between S4 and 
E4P, which sequesters the positive transcription elongation fac-
tor (P-TEFb) from activating RNAPol-II at the promoter (97). 
Another factor that cooperates with Runx1 in Cd4 silencing at 
the DN stage is the bHLH transcription factor adaptor-related 
protein complex 4 (AP4), which binds to E4P (98). This raises the 
possibility that a loop forming between E4P and S4 via Runx1 
and AP4 prevents transcription in DN thymocytes and, upon 
Runx1 downregulation during the DN–DP transition, P-TEFb 
associates with RNAPol-II at the promoter to drive expression. 
However, Runx1 has also been reported to bind to S4 in DP 
thymocytes, suggesting that its repressive function is overridden 
by an unknown mechanism at this stage. Another study using 
three-dimensional fluorescent in  situ hybridization showed 
that the Cd4 and Cd8 loci are in close proximity when CD8 
is expressed (in DP thymocytes and CD8+ T cells), but in the 
absence of S4, this association was lost, suggesting that S4 has a 
role in locus architecture (99). Strikingly, association of the co-
receptor loci was conserved in human T cells even though Cd4 
and Cd8 are on different chromosomes, suggesting that their 
proximity may be functionally important. Thus, S4 together with 
E4P and E4M are able to direct helper lineage-specific expression 
of CD4 in vivo.

Taken together, the study of cis elements controlling Cd4 
expression during T cell development revealed a key role for these 
elements in the establishment of key epigenetic marks that can 
be transmitted thereafter in a heritable manner. Thus, a thorough 
analysis of the stage-specific activity of these elements provides 
a unique opportunity to delve into molecular requirements for 
heritable transmission.

DNA MeTHYLATiON AS A KeY 
ePiGeNeTiC MARK FOR THe HeRiTABLe 
eXPReSSiON OF Cd4

The nature of the epigenetic process employed to enable heritable 
silencing of Cd4 in mature CD8 T cells in the absence of S4 was 
a missing piece in our understanding until recently. An shRNA 
screen, designed to identify genes repressing Cd4 in mature CD8+ 
T cells independently of S4, led to the identification of Dnmt1 and 
the DNA methylation pathway as a central requirement to this 
process (100). Although previous experiments had concluded 
that DNA methylation was not involved in CD4 silencing, these 
results were obtained with 5-azacytidine, a potent inhibitor of 
DNA methylation, that likely obscured CD4 derepression due to 
toxicity in primary CD8+ T cells (87). Indeed, a subsequent study 
with reduced dosing of the inhibitor showed CD4 derepression 
(75). Additional genetic evidence demonstrating the role of DNA 
methylation in CD4 silencing was shown through the use of mice 
with mutations in Dnmt1 and the de novo DNMTs, Dnmt3a and 
Dnmt3b. Transfer of DNMT-deficient naïve CD8+ T  cells into 
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lymphopenic mice resulted in robust CD4 derepression follow-
ing homeostatic proliferation. Interestingly CD4 expression in 
naïve T  cells from Dnmt-deficient mice is normal, suggesting 
that CD4 derepression in the absence of DNA methylation 
machinery occurs during robust T cell proliferation. Whether the 
conditional inactivation of the Dnmt3 enzymes using CD4-Cre 
influences CD4 derepression due to effects on de novo rather than 
maintenance methylation remains to be determined.

The changes in DNA methylation at the Cd4 locus during 
thymic development were assessed using bisulfite CATCH-seq 
(clone-adapted template-capture-hybridization sequencing). 
A region displaying a high level of differential methylation 
[differentially methylated region (DMR)] between CD4+ and 
CD8+ T  cells was identified in the first intron, extending from 
−0.7 kb to +3.2 kb relative to the Cd4 transcriptional start site. 
The levels of DNA methylation during development correlated 
with CD4 expression, such that the locus was hypermethylated 

in DN and CD8SP thymocytes compared to CD4SP thymocytes. 
Surprisingly, CD4 expression in DP thymocytes was uncoupled 
from DNA methylation, as the Cd4 locus was hypermethylated 
and resembled methylation patterns in CD8SP cells. However, 
a few additional methylated CpGs were found in CD8SP thy-
mocytes compared to DP thymocytes, presumably due to the 
activity of Dnmt3 enzymes. It is possible that these methylated 
CpGs are sufficient to repress Cd4 transcription, for example, 
by influencing recruitment of activating or repressive transcrip-
tion factors to the locus or decreasing chromatin accessibility 
through nucleosome remodeling. As bisulfite sequencing does 
not discriminate between 5mC and 5hmC, another possibility is 
that some of the methylated CpGs at the Cd4 locus are 5hmCs, 
whose presence would promote CD4 expression (101). It is also 
possible that additional chromatin modifications induced by 
S4 through lineage-specific transcription factors such as Runx3 
may be required to initiate CD4 repression during commitment 
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to the cytotoxic lineage. Analysis of the Cd4 locus revealed that 
the hypermethylation status of the DMR in CD8+ T  cells was 
critically dependent on S4. In the absence of S4, the Cd4 DMR 
methylation levels in CD4+CD8+ cytotoxic T  cells resembled 
those in WT CD4+ T cells. Thus, S4 may be required to prevent 
demethylation after commitment to the CD8+ lineage and to par-
ticipate in the establishment of heritable methylation marks for 
stable repression of CD4 in CD8+ T cells. Future investigation will 
allow testing of these hypotheses and address the contribution of 
factors involved in Cd4 silencing such as Runx3 and Tcf1. Taken 
together, the results indicate that DNA methylation mediated 
by S4 is required, at least in part, for heritable silencing in the 
cytotoxic lineage.

A ROLe FOR TeT-MeDiATeD DNA 
DeMeTHYLATiON iN HeRiTABLe 
eXPReSSiON OF CD4

The loss of methylation initially present in DN and DP cells during 
CD4+ T cell differentiation suggested that DNA demethylation is 
crucial for maintaining CD4 expression (100). As there is a lack 
of cell division during the DP to SP transition following positive 

selection, the decreased methylation in CD4SP cells suggested an 
active demethylation process rather than the lack of methylation 
maintenance during replication. Indeed, locus-specific oxidative 
bisulfite amplicon sequencing detected the presence of 5hmC at 
the Cd4 locus in CD4+CD8lo thymocytes as they differentiated 
into CD4SP cells. A subsequent study also found that 5hmC 
levels were correlated with gene activation in the thymus, and 
5hmC was enriched in genomic regions harboring H3K4Me1 and 
H3K27Ac, marks associated with enhancers (102). The precise 
functions of the three TET enzymes in lineage commitment, 
and the mechanism of their recruitment to the Cd4 locus are not 
known. Remarkably, although S4 was associated with increased 
methylation in CD8SP cells, the PE E4P was critical for dem-
ethylation in CD4SP cells (Figure 4). E4P

−/− naïve CD4+ T cells 
exhibited hypermethylation of the Cd4 DMR similar to WT CD8+ 
T  cells. Furthermore, the loss of CD4 expression in activated 
E4P

−/− helper T cells correlated with increased DNA methylation 
of the locus. Thus, E4P is required during development for the 
establishment of a heritable hypomethylated state at the Cd4 locus 
in mature CD4+ T cells. It will be interesting to determine how 
E4P coordinates DNA demethylation of the locus. In addition, in 
the absence of Thpok, the Cd4 locus was hypomethylated in MHC 
class II selected cells redirected to the CD8+ lineage compared to 
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WT CD8+ lineage cells, suggesting that Thpok is partially dispen-
sable for DNA demethylation (100). Taken together, these results 
reveal a critical role for cis-regulatory elements in coordinating 
the proper epigenetic machinery during development that is 
essential for heritable Cd4 expression (Figure 4). Elucidation of 
how transcription factors binding to these elements choreograph 
the functions of Dnmts and TET enzymes promises to reveal 
important aspects of differential signaling in positive selection of 
CD4 and CD8 SP cells.

cis eLeMeNTS AND ePiGeNeTiC 
ReGULATiON OF THe Cd8 LOCUS

CD8 enhancers
The Cd8 locus is composed of two linked genes, Cd8a and Cd8b1. 
In mice, they are found on chromosome 6, separated by 36 kb and 
aligned in the same transcriptional orientation. DP thymocytes 
and most cytotoxic TCRαβ T  cells express CD8 as a CD8αβ 
heterodimer, whereas on intraepithelial lymphocytes (IELs) and 
a subset of dendritic cells, CD8 can be expressed as a homodimer 
of CD8αα. This suggests that both genes can be coordinately and 

independently regulated in different cell types. An 80-kb genomic 
fragment encompassing the Cd8 locus was found to drive devel-
opmental stage and lineage-specific expression of a reporter 
transgene (103, 104). Four DHS clusters within this fragment (CI-
IV) contain at least six enhancers. E8I enhancer (CIII-1,2) was 
found to drive CD8 expression in CD8SP thymocytes, mature 
CD8+ T cells, and IELs (104–106). Interestingly, the onset of E8I 
activity was observed in positively selected thymocytes, suggest-
ing a link between this element and cytotoxic T cell commitment. 
E8II (CIV-4,5) directed expression in both DP thymocytes and 
CD8+ T cells, while E8III (CIV-3) drove CD8 expression in imma-
ture DP thymocytes. The E8IV (CIV-1,2) element was active in 
DP and CD8+ T cells. In transgenic studies, E8V (CII) exhibited 
no enhancer function by itself, but a combination of E8V and E8I 
directed expression in both CD8+ T  cells and DP thymocytes, 
unlike E8I alone, suggesting that stage-specific activity could 
arise through combinations of CD8 enhancers (107). Recently, 
another cis element termed E8VI (CIV-6) was described, which 
directed transgenic reporter expression in mature CD8+ T cells, 
memory-phenotype-like CD44hiCD62L+CD8+ T  cells, and 
CD8αα+ dendritic cells (108). In summary, at least six enhancers 
direct CD8 expression in cytotoxic T cells (Figure 5).
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Studies examining the regulation of the endogenous Cd8 locus 
through genetic deletion revealed both specific and cooperative 
modes of enhancer regulation. In E8I

−/− mice, both TCRγδ and 
TCRαβ IELs showed a significant decrease in CD8α, while CD8 
expression in DP thymocytes, CD8SP thymocytes, and peripheral 
CD8+ T cells was largely intact (106, 107). E8I was also found to 
be crucial for the maintenance of CD8α expression in activated 
CD8+ T cells (109). In some cases, combinatorial enhancer activity 
occurred as shown by combined deletion of E8I/E8II, resulting in 
variegated expression in DP thymocytes that did not occur with 
single deletion of either enhancer (110). In contrast, combined 
deletion of E8I/E8II had no additional effect on the maintenance 
of CD8 expression in activated CD8+ T cells than deletion of E8I 
alone (109). These results suggested that E8I might have a non-
redundant role in maintaining transcription of CD8α during 
activation, as IELs are also thought to exist in a partially activated 
state (111). Similar to combined E8I/E8II deletion, variegated CD8 
expression was observed during the DN–DP transition with dele-
tion of E8V or combined deletion of E8II/E8III (112, 113). Taken 
together, these data indicate that in vivo the CD8 enhancers have 
both non-redundant and stage-specific functions.

Search for a CD8 Silencer element
It is unclear whether there is a silencer in the Cd8 locus, analo-
gous to that in Cd4, that restricts its expression to the cytotoxic 
lineage. Experiments in a hybridoma cell line suggested the 
possibility that DNA elements in cis to the Cd8 locus were able 
to silence transcription (114). Referred to as L2a, this region 
within E8V was identified as a matrix-associated region (MAR), 
an AT-rich sequence that mediates attachment to the nuclear 
matrix (115). In transgenic experiments, L2a was found to 
have negative transcriptional activity using an E8I/E8V hCD2 
reporter construct that was reversed by the MAR binding pro-
tein, Satb1 (special AT-rich sequence binding protein 1) (116). 
Deletion at the endogenous locus as well as assays for position 
and orientation independence will help clarify whether this is 
a bona fide silencer. Thus, in contrast to the Cd4 locus, there 
is currently no known negative element that confers helper 
versus cytotoxic lineage specificity of CD8 expression. One 
ontological explanation is that there may be a need for greater 
plasticity in CD8 expression compared to CD4. For example, 
positive selection of DP thymocytes induces the downregula-
tion of CD8, which is reversed during cytotoxic lineage com-
mitment (7). The overexpression of Thpok in CD8+ cytotoxic 
T  cells silences CD8 but does not induce CD4 expression  
(8, 117). In vivo, some CD4+ helper T  cells in the intestine 
undergo transcriptional reprogramming toward a cytotoxic 
phenotype including upregulation of CD8αα following the 
downregulation of Thpok (118, 119). Thus, dynamic and flex-
ible CD8 expression in T cells may require regulation mediated 
directly through a transcriptional circuit.

epigenetic Regulation of CD8 expression
The variegated CD8 expression in DP thymocytes due to 
deletion of E8I/II or E8V suggested that these enhancers were 
required to protect the Cd8 locus from repressive chromatin 
modifications. Interestingly, mutations in the SWI/SNF-like 

nucleosome remodeling BAF complex caused similar CD8 
variegation in DP thymocytes as the enhancer-deficient mice 
(82, 110, 112). BAF likely regulates Cd8 directly, as it was 
found to bind to the locus by ChIP analysis (82). The DNA-
binding transcriptional regulator Ikaros, which was reported to 
associate with the BAF complex, was also required for efficient 
CD8 upregulation during the DN–DP transition when on an 
Aiolos-deficient background (another Ikaros family member) 
(120, 121). In T  cells, Ikaros was also found to associate with 
the repressive chromatin remodeling complex NuRD (122). The 
NuRD ATPase chromatin remodeling subunit, mi-2β, was found 
to bind the Cd8 locus until pre-TCR signaling, upon which its 
eviction coincided with increased DNAse I hypersensitivity and 
expression of CD8 (123). Thus, different chromatin remodeling 
complexes, presumably recruited by transcription factors such 
as Ikaros to the CD8 enhancers, can activate or repress CD8 
expression at different stages of development.

Double-positive thymocytes that failed to upregulate CD8 
in E8I/II-deficient mice showed decreased histone acetylation 
at the Cd8 locus concomitantly with a decrease in H3K4Me3, 
both consistent with the loss of expression (124). H3Ac was also 
decreased along with an increase in H3K27Me3 in activated 
cytotoxic T cells from E8I

−/− mice that had lost CD8 expression 
(109). Treatment of E8I

−/− CD8+ T cells with the HDAC inhibitor 
TSA partially rescued CD8 expression during activation although 
there was no restoration of CD8 in T cells that had already lost 
expression (109). Interestingly, the unstable CD8 expression 
during proliferation was reminiscent of CD4 expression in the 
absence of either E4M or E4P (73, 75).

Histone acetylation appears to play a particularly prominent 
role in CD8 regulation, as the deletion of HDAC1/2 with CD4-
Cre caused CD8 derepression in CD4+ T cells (125). In contrast, 
Dnmt1 deletion did not affect CD8 expression in CD4+ T cells but 
caused CD8 derepression in TCRγδ cells, suggesting differential 
dependence on DNA methylation and histone modifications for 
CD8 silencing in different cell types (126). DNA methylation 
was also analyzed in thymocytes that had failed to upregulate 
CD8 during the DN–DP transition in E8I/II-deficient mice 
(124). Previous studies showed that DNA methylation patterns 
correlate with CD8 expression during thymocyte development 
and in peripheral T  cells (126–129). However, in the absence 
of E8I/II, there was a gain in methylation of several CpGs at the 
Cd8 locus at E8V, and the expression of CD8 could be partially 
rescued by crossing the mice onto a Dnmt1-deficient background 
(124). These results suggest that factors binding to E8I/II promote 
Cd8 expression through inhibition of the DNA methylation 
machinery.

Key Regulators of the Cd4 and Cd8 
epigenetic Landscape

Mazr
The BTB-ZF family member Mazr was identified in a yeast-one-
hybrid screen to bind to E8II (124). By ChIP-PCR, it was shown 
that Mazr also binds at numerous locations in the Cd8 locus at 
the DN stage, and this binding is reduced in DP thymocytes fol-
lowing CD8 upregulation. Ectopic expression of Mazr-induced 
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variegated CD8 expression in DP thymocytes, while deletion 
of Mazr on an E8I/E8II-deficient background reduced CD8 
variegation (124, 130). However, in WT  cells, Mazr deficiency 
was insufficient to derepress CD8 expression in DN thymocytes, 
suggesting redundancy with other repressive factors or lack of 
activating factors to initiate expression. Mechanistically, Mazr 
was found to bind to the co-repressor N-CoR, a component of 
large repressor complexes that include HDACs, and presumably 
Mazr can recruit these complexes to silence CD8 in DN thymo-
cytes. Mazr was also connected to the network of transcription 
factors that regulate lineage commitment through the discovery 
of its role in the regulation of the T helper commitment factor 
Thpok (130). In the absence of Mazr, Thpok was derepressed in 
DP thymocytes, leading to lineage redirection of MHC class I 
selected thymocytes into the helper lineage. The derepression of 
Thpok was enhanced when combined with mutations in Runx1 
or Runx3 (131). CD4 derepression was also enhanced in DN thy-
mocytes doubly deficient for Runx proteins and Mazr, support-
ing a cooperative role between these factors (131). Mazr likely 
regulates Thpok expression directly as it was found to bind the 
Thpok silencer element (130). Mazr-mediated silencing of Thpok 
is also important in the periphery as Mazr deficiency inhibited 
the induction of cytotoxic CD4+ T cells in the intestine through 
the inability to fully downregulate Thpok (118).

Thpok
The key transcription factor that directs commitment to the 
CD4+ lineage is Thpok, also known as Zbtb7b or cKrox. A role 
for Thpok in thymocyte development was discovered after the 
identification of a spontaneous mutant mouse strain deficient in 
T helper cells, referred to as helper-deficient (HD) mice (132, 
133). The mutation was mapped to an amino acid substitution in 
the second zinc finger domain of Thpok, and the causal role of 
the mutation in the HD phenotype was confirmed by transgenic 
rescue of CD4+ lineage development with WT Thpok (133, 134). 
Furthermore, the HD mouse strain could not be rescued by 
an MHC class II restricted TCR transgene, and there was no 
evidence of impaired positive selection in the thymus, indicat-
ing that Thpok was downstream of TCR signaling. Another 
study investigated Thpok based on its significant upregulation 
following MHC class II selection in the thymus (134). Ectopic 
expression of Thpok redirected MHC class I selected thymocytes 
to the helper lineage, indicating it was both required and (in the 
context of expression of other factors, such as GATA3) sufficient 
for CD4+ lineage commitment (133, 134).

Mechanistically, Thpok plays a critical role in lineage commit-
ment through its antagonism of the CD8+ lineage transcription 
factor Runx3. Thpok was found by ChIP to bind to the Cd4 
silencer in CD4SP cells, and ectopic Thpok expression in DN 
thymocytes caused CD4 derepression, suggesting that Thpok 
directly antagonizes Runx activity at the silencer (92, 135). Thpok 
may continue to antagonize CD4 silencing in mature T cells, as 
peripheral deletion of Thpok led to aberrant populations of MHC 
class II restricted T cells that were CD4loCD8− and CD4+CD8+. 
These populations were reduced by the additional absence of 
Runx complexes, suggesting that postthymic Thpok is required 
for both the proper expression of CD4 and the repression of CD8 

in helper T cells (119, 136). However, inducible inactivation of 
Thpok in peripheral T  cells as well as the physiological down-
regulation of Thpok in the intestine did not produce a population 
of CD4−/CD4lo helper T cells (118, 137). This may be due to the 
leakiness of the transgenes used to drive Thpok excision in the 
different studies or technical limitations of inducible systems, 
and further studies are warranted to determine whether Thpok 
is needed for CD4 expression postthymically. Finally, analysis of 
mice with GFP inserted into the Thpok locus and YFP inserted 
into the Runx3 locus demonstrated that Thpok was required to 
repress Runx3 expression in MHC class II selected cells (138). 
Conversely, helper T cell differentiation in the absence of Thpok 
could be rescued by Runx deficiency (138). Taken together, 
these data suggest a mutual antagonism between these critical 
transcription factors for CD4+ and CD8+ T cell differentiation.

The above studies also suggested that, in contrast to the 
epigenetic silencing of CD4, CD8 silencing in mature CD4 
lineage cells depends on the continuous activity of Thpok. As 
has been reported for other BTB-ZF family members, Thpok 
function has been linked to repression through HDAC activity 
(135, 139). At the Cd8 locus, Thpok has been found to occupy the 
CD8 enhancers and promoter in CD4SP thymocytes (139). The 
HDAC inhibitor TSA blocked the repressive activity of Thpok in 
luciferase assays, and numerous HDACs were found to associ-
ate with Thpok by Co-IP (139). Interestingly, a mutant form of 
Thpok that prevented its interaction with Hdac4 was unable to 
inhibit CD8 expression when overexpressed in CD8+ T  cells 
(117, 139). Although the mutation did not affect Thpok binding 
to the Cd8 locus, it abrogated recruitment of Hdac4. In addi-
tion, in a CD4+ thymoma cell line, Thpok was unable to inhibit 
Runx-mediated repression of an E4p-S4 GFP reporter construct 
after TSA treatment (135). Thus, HDACs seem to be essential 
components for Thpok function, but additional in vivo studies of 
their complementary roles are needed.

Interestingly, initiation of demethylation of the Cd4 locus 
coincides with the upregulation of Thpok, which is first detected 
in postselection CD4+CD8lo thymocytes (100, 138). CD8+ T cells 
from ThpokGFP/− mice, which are MHC class II restricted cells 
redirected from the CD4SP lineage, express GFP, suggesting that 
MHC class II restricted positive selection is required and sufficient 
to turn on high Thpok expression (138). However, the Cd4 locus 
was still hypomethylated in MHC class II-selected cells redirected 
to the CD8+ lineage in the absence of Thpok compared to WT 
CD8+ lineage cells, suggesting that Thpok is partially dispensable 
for DNA demethylation. Therefore, additional unknown factors 
triggered during MHC class II-mediated TCR signaling may be 
responsible for coordinating TET-mediated demethylation of the 
locus (Figure 6).

Given the sufficiency and requirement of Thpok in T helper 
cell differentiation, a series of studies were undertaken to 
characterize the cis elements regulating its expression (92, 140). 
A genomic region upstream of the Thpok distal promoter, the 
distal regulatory element (DRE), was found to drive expression 
in the CD4+CD8lo stage and in MHC class II selected cells. The 
DRE was subsequently dissected into two distinct elements, 
the Thpok silencer, which determined helper lineage specific-
ity, and the thymic enhancer (TE), which drove expression 
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early after positive selection (141). Interestingly, Thpok silencer 
deletion in mature CD8+ T  cells did not cause derepression, 
indicating that Thpok was heritably silenced in cytotoxic T cells 
after thymic development, similar to the Cd4 locus (87, 142). 
DHS studies also revealed the presence of another region in 
the Thpok locus that lies 1.8  kb downstream of the proximal 
promoter of Thpok. Termed the proximal regulatory element 
(PRE), this region was more accessible in CD4 lineage cells. An 
enhancer within the PRE, referred to as the PE, was essential 
for efficient Thpok induction after MHC class II selection (92). 
Deletion of either the PE or the TE within the Thpok locus 
led to redirection of MHC class II-selected cells toward the 
cytotoxic lineage (92, 141). The general T lymphoid element 

(GTE), a region between the DRE and PRE, was found to direct 
reporter expression in both helper and cytotoxic T cell lineages 
in transgenic mice (140). Thus, Thpok expression is regulated 
by at least three enhancers and one silencer element. Several 
Runx motifs were found within the Thpok silencer, and their 
deletion in the germline revealed critical roles for Runx com-
plexes in silencing Thpok (140, 143). Furthermore, mice with 
mutations in Runx1 and Runx3, or in the obligate Runx binding 
partner Cbfb, showed Thpok derepression in preselection DP 
thymocytes and loss of the cytotoxic lineage. Interestingly, 
Runx complexes were bound to the Thpok silencer in both 
CD4+ and CD8+ T cells, suggesting that Runx localization to the 
silencer was insufficient to repress Thpok (143). Indeed, Thpok 
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was also bound to its own silencer, where it may antagonize 
Runx-mediated repression in helper T cells, thereby acting in a 
positive feedback loop.

Runx
The Runx family is composed of three evolutionally conserved 
transcription factors, Runx1, Runx2, and Runx3, which have 
important developmental roles including hematopoiesis, osteo-
genesis, and neurogenesis (90). Mammalian Runx genes make 
use of two promoters, a distal promoter (P1) and a proximal pro-
moter (P2), to generate different transcripts. Expression of Runx1 
and Runx3 in T cells is driven by distal P1-promoter activity (138, 
144). Structurally, Runx proteins contain two conserved domains, 
an N-terminal DNA-binding Runt domain and the C-terminal 
VWRPY penta-peptide motif (145). The Runt domain binds to 
core-binding subunit-β (Cbfb) that is required for stabilizing the 
interaction of Runx proteins with DNA. The VWRPY motif is 
thought to act as a docking module for the Groucho/TLE co-
repressor protein family, which is required for Runx-mediated 
repression of multiple genes. As discussed above, Runx1 and 
Runx3 are critical for CD4 silencing at the DN and CD8SP stages, 
respectively. Interestingly, silencing activity of Runx3 at the Cd4 
locus depends on the VWRPY motif, and mice expressing mutant 
Runx1 and Runx3 lacking this motif showed complete CD4 
derepression in CD8+ T cells (146, 147). In contrast, the Thpok 
silencer remained partly functional in the absence of both Runx 
VWRPY motifs, suggesting that these factors employ different 
modes of transcriptional regulation of Cd4 at different stages of 
development (147). Consistent with this observation, VWRPY-
mediated recruitment of the co-repressor TLE2 was enriched 
at S4 relative to the Thpok silencer (147). VWRPY-independent 
silencing might involve Runx association with other repressive 
complexes. For instance, Runx proteins have been shown to 
associate with HDACs and Sin3A and thymic deletion of Sin3a 
in mice impairs the development of CD8+ T cells, reminiscent of 
Runx-deficient mice (143, 148–150). In addition to the Groucho 
and TLE co-repressor complexes, Runx1 was shown to interact 
with HDACs and SUV39H1 to repress transcription by way of 
a domain distinct from the VWRPY penta-peptide motif (151). 
However, whether this association plays a role in the epigenetic 
silencing of Cd4 or lineage commitment is unknown.

Although S4 is required for the proper methylation of the Cd4 
locus in CD8+ T cells, it is presently unclear whether Runx3 plays 
a role in mediating methylation changes in CD8+ T cells. As the 
selection of CD8+ T cells has been proposed to be promoted by 
downregulation of CD8 expression at the CD4+CD8lo stage, due 
to transient reduction of avidity of TCR interaction with MHC 
class I complexes (7), it is tempting to speculate that TET enzymes 
are not recruited to the Cd4 locus in CD8+ T cells as a result of 
reduced TCR signaling. Alternatively, IL-7R signaling in MHC 
class I selected T  cells may inhibit TET enzyme recruitment/
activity by way of yet to be determined factors (Figure 6).

Runx complexes are also important for promoting CD8 expres-
sion during T cell development. ChIP experiments have revealed 
binding of Runx complexes to E8I, E8II, and E8IV in CD8SP and 
DP thymocytes (94). Runx1 deficiency reduced CD8 expression 
in DP thymocytes, while Runx3 deficiency reduced expression 

in CD8SP thymocytes (91, 152). In the absence of Runx3 or 
Cbfb, CD8 expression was also unstable in peripheral CD8+ 
T  cells activated ex vivo (109). However, inactivation of Runx 
complexes in mature CD8+ T cells did not lead to loss of CD8 
expression, suggesting that Runx complexes prime the Cd8 locus 
through enhancer activity during development, enabling herit-
able activation in peripheral T cells. The mechanisms by which 
Runx proteins mediate the heritable activation of CD8 expression 
in mature cytotoxic T cells and coordinate deposition of active 
chromatin marks is not known. In addition to Cd4 silencing and 
Cd8 activation, Runx proteins have multiple other important roles 
in T cell development. Deletion of Runx1 impaired β-selection, 
positive selection, and the survival of the helper lineage, while 
Runx3 has been shown to be essential for efficient CD8+ T cell 
differentiation by repressing CD4+ lineage genes such as Thpok 
and activating cytotoxic lineage genes such as those encoding 
perforin, granzyme B, and CD103 (143, 146, 152, 153). However, 
ectopic expression of Runx3 was insufficient to induce CD8+ line-
age redirection, suggesting that it may be epistatic to other factors 
induced by MHC class II selection (11, 143).

Tcf1 and Lef1
T cell factor 1 and Lef1 (encoded by Tcf7 and Lef1 genes, respec-
tively) are HMG transcription factors of the Tcf/Lef family that 
control key steps in development during T cell maturation (154). 
Notch signaling in early thymic progenitors induces expression 
of Tcf1, which then employs various mechanisms to ensure T cell 
lineage commitment, including promoting β-selection at the 
CD4−CD8− double-negative 3 stage and preventing malignant 
transformation (Figure 6, top) (155, 156). It was recently shown 
that Tcf1 and Lef1 are required for CD4+ lineage commitment, 
and a deficiency of Tcf1 and Lef1 results in lineage redirection of 
MHC class II selected cells into CD8+ T cells (157). This is in part 
mediated by direct regulation of Thpok as Tcf1 binds the GTE in 
the Thpok locus (140). In agreement with Tcf1 acting upstream of 
Thpok, ectopic expression of Thpok rescued the CD4+ T cell defect in  
Tcf7−/−Lef1−/− mice. Notably, the expression of additional 
transcription factors important for CD4+ T cell differentiation, 
GATA3, Myb, and Tox, was unchanged in the absence of Tcf1 
and Lef1 (157).

Tcf7−/−Lef1−/− mice also showed derepression of CD4 in 
CD8SP cells, without changes in Runx3 expression. Tcf1 co-
immunoprecipitated with Runx3, and ChIP analysis showed 
binding to S4. Mechanistically, Tcf1 likely cooperates with Runx 
complexes to silence CD4 as loss of Runx3 together with Tcf1 
and Lef1 led to increased derepression of Cd4. Although Lef/
Tcf members are known to interact with Groucho/TLE, physical 
interaction between Tcf1 and Runx3 was shown to occur inde-
pendently of Groucho-TLE (158–160). Interestingly, an intrinsic 
HDAC domain in Tcf1 and Lef1 was required for the repression 
of genes associated with the CD4+ lineage, including Cd4, Cd40lg, 
FoxP3, and Rorc in CD8SP cells (158). Purified Tcf1 caused 
deacetylation of both H3K9Ac and H3K27Ac protein substrates 
in vitro, and this activity was abrogated in mutants lacking the 
putative 30 amino acid HDAC domain. In vivo, about 80% of Tcf1 
target genes in CD8SP cells had elevated H3K27Ac and H3K9Ac 
in the absence of Tcf1 and Lef1. However, such marks were also 
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found in a proportion of upregulated genes that did not harbor 
Tcf1-binding sites, suggesting indirect changes in acetylation as 
well. Furthermore, association with canonical HDACs could be 
responsible for deacetylation of certain genes, as physical inter-
action of Lef1 with HDAC1 was previously demonstrated (161). 
Tcf1-HDAC activity may also modify non-histone substrates. 
As Runx3 was found acetylated in some cancers, Tcf1 may act 
directly on Runx3 to modulate CD4 silencing (162, 163). It will 
be interesting to determine how Tcf1 and Lef1 HDAC activity is 
regulated, particularly with regards to target genes it activates, as 
deacetylation is typically associated with silencing.

PeRSPeCTiveS AND FUTURe 
DiReCTiONS

In this review, we have emphasized how the studies of Cd4 and 
Cd8 regulation have revealed key insights into epigenetic mecha-
nisms that mediate lineage commitment and maintain gene 
expression patterns that determine cell identity. The dynamic 
expression pattern of the co-receptor genes, from transient 
expression in DP thymocytes to stable expression or repression 
in CD4SP and CD8SP cells, provides a tractable system to under-
stand mechanisms of heritability. Although cis elements are 
required for transcriptional control of Cd4, they are also required 
to direct epigenetic marks essential for heritable transmission in 
a stage-dependent manner. Recent discoveries have highlighted 
a key role for these elements in modulating DNA methylation 
changes that are key for heritable CD4 expression and histone 
acetylation in controlling dynamic CD8 expression. Excitingly, 
these studies have opened doors to understanding how antago-
nistic epigenetic processes can be co-regulated. For instance, it 
remains unclear how S4 inhibits DNA demethylation of the Cd4 
locus while entraining the Dnmt enzymes in CD8+ T cells and 

how the Cd4 cis elements direct demethylation through the TET 
enzymes. The mechanisms regulating HDAC activity at the Cd8 
locus for silencing expression in the CD4+ lineage also warrants 
additional study. Moreover, other branches shaping the epige-
netic landscape have yet to be explored. Although the lncRNA 
transcriptome across bone marrow and thymic progenitors 
has been sequenced in humans, the functional contribution of 
these and other ncRNAs in T cell lineage commitment remains 
largely unexplored (164). Thus, it will be interesting to examine 
how lncRNA, enhancer RNA, microRNA, and other ncRNA 
species participate in lineage commitment and modulate chro-
matin at lineage-specific gene loci such as Cd4, Cd8, and Thpok. 
Furthermore, DNA demethylation at the Cd8 locus and its rela-
tionship with the CD8 cis elements is yet to be determined. The 
contribution of histone variants and their chaperones to gene 
expression is also likely to advance our understanding of lineage 
commitment, as is more detailed mapping of chromatin interac-
tions between the different cis elements at the Cd4 and Cd8 loci. 
With advances in technology such as CRISPR/Cas9 genome 
editing, single-cell sequencing and locus-specific manipulation 
of chromatin, the pieces of the puzzle of heritability of gene 
expression can now begin to be assembled.
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