122 research outputs found

    Expression, Purification, and Analysis of Unknown Translation Factors from Escherichia coli: A Synthesis Approach

    Get PDF
    New approaches are currently being developed to expose biochemistry and molecular biology undergraduates to a more interactive learning environment. Here, we propose a unique project-based laboratory module, which incorporates exposure to biophysical chemistry approaches to address problems in protein chemistry. Each of the experiments described herein contributes to the stepwise process of isolating, identifying, and analyzing a protein involved in a central biological process, prokaryotic translation. Students are provided with expression plasmids that harbor an unknown translation factor, and it is their charge to complete a series of experiments that will allow them to develop hypotheses for discovering the identity of their unknown (from a list of potential candidates). Subsequent to the identification of their unknown translation factor, a series of protein unfolding exercises are performed employing circular dichroism and fluorescence spectroscopies, allowing students to directly calculate thermodynamic parameters centered around determining the equilibrium constant for unfolding as a function of denaturant (temperature or chemical). The conclusion of this multi-part laboratory exercise consists of both oral and written presentations, emphasizing synthesis of the roles of each translation factor during the stepwise process of translation

    Discovery of a Wolf-Rayet Star Through Detection of its Photometric Variability

    Full text link
    We report the serendipitous discovery of a heavily reddened Wolf-Rayet star that we name WR142b. While photometrically monitoring a cataclysmic variable, we detected weak variability in a nearby field star. Low-resolution spectroscopy revealed a strong emission line at 7100 Ang., suggesting an unusual object and prompting further study. A spectrum taken with the Hobby-Eberly Telescope confirms strong HeII emission and a NIV 7112 Ang. line consistent with a nitrogen-rich Wolf-Rayet star of spectral class WN6. Analysis of the HeII line strengths reveals no detectable hydrogen in WR142b. A blue-sensitive spectrum obtained with the Large Binocular Telescope shows no evidence for a hot companion star. The continuum shape and emission line ratios imply a reddening of E(B-V)=2.2 to 2.5 mag. If not for the dust extinction, this new Wolf-Rayet star could be visible to the naked eye.Comment: 15 pages, 6 figures, submitted to the Astronomical Journa

    Long-term photometric variations in the candidate white-dwarf pulsar AR Scorpii from K2 , CRTS, and ASAS-SN observations

    Get PDF
    We analyze long-cadence Kepler K2 observations of AR Sco from 2014, along with survey photometry obtained between 2005 and 2016 by the Catalina Real-Time Sky Survey and the All-Sky Automated Survey for Supernovae. The K2 data show the orbital modulation to have been fairly stable during the 78 days of observations, but we detect aperiodic deviations from the average waveform with an amplitude of ~2% on a timescale of a few days. A comparison of the K2 data with the survey photometry reveals that the orbital waveform gradually changed between 2005 and 2010, with the orbital maximum shifting to earlier phases. We compare these photometric variations with proposed models of this unusual system
    corecore