19 research outputs found

    Localized thermonuclear bursts from accreting magnetic white dwarfs

    Get PDF
    Nova explosions are caused by global thermonuclear runaways triggered in the surface layers of accreting white dwarfs1,2,3. It has been predicted4,5,6 that localized thermonuclear bursts on white dwarfs can also take place, similar to type-I X-ray bursts observed in accreting neutron stars. Unexplained rapid bursts from the binary system TV Columbae, in which mass is accreted onto a moderately strong magnetized white dwarf from a low-mass companion, have been observed on several occasions in the past 40 years7,8,9,10,11. During these bursts, the optical/ultraviolet luminosity increases by a factor of more than  three in less than an hour and fades in around ten hours. Fast outflows have been observed in ultraviolet spectral lines7, with velocities of more than 3,500 kilometres per second, comparable to the escape velocity from the white dwarf surface. Here we report on optical bursts observed in TV Columbae and in two additional accreting systems, EI Ursae Majoris and ASASSN-19bh. The bursts have a total energy of approximately 10−6 times than those of classical nova explosions (micronovae) and bear a strong resemblance to type-I X-ray bursts12,13,14. We exclude accretion or stellar magnetic reconnection events as their origin and suggest thermonuclear runaway events in magnetically confined accretion columns as a viable explanation

    International study of factors affecting human chromosome translocations

    No full text
    Chromosome translocations in peripheral blood lymphocytes of normal, healthy humans increase with age, but the effects of gender, race, and cigarette smoking on background translocation yields have not been examined systematically. Further, the shape of the relationship between age and translocation frequency (TF) has not been definitively determined. We collected existing data from 16 laboratories in North America, Europe, and Asia on TFs measured in peripheral blood lymphocytes by fluorescence in situ hybridization whole chromosome painting among 1933 individuals. In Poisson regression models, age, ranging from newborns (cord blood) to 85 years, was strongly associated with TF and this relationship showed significant upward curvature at older ages versus a linear relationship (p < 0.001). Ever smokers had significantly higher TFs than non-smokers (rate ratio (RR) = 1.19, 95% confidence interval (CI), 1.09-1.30) and smoking modified the effect of age on TFs with a steeper age-related increase among ever smokers compared to non-smokers (p < 0.001). TFs did not differ by gender. Interpreting an independent effect of race was difficult owing to laboratory variation. Our study is three times larger than any pooled effort to date, confirming a suspected curvilinear relationship of TF with age. The significant effect of cigarette smoking has not been observed with previous pooled studies of TF in humans. Our data provide stable estimates of background TF by age, gender, race, and smoking status and suggest an acceleration of chromosome damage above age 60 and among those with a history of smoking cigarettes. © 2008 Elsevier B.V. All rights reserved
    corecore