18,395 research outputs found
Characterization of ASEC BSR 2 ohm-cm silicon solar cells with dielectric wraparound contacts as a function of temperature and intensity
Twenty high performance BSR 2 ohm-cm silicon solar cells manufactured by ASEC were evaluated at 1 AU conditions and at low temperature and low intensities representative of deep space. These cells showed evidence of series resistance of 1 AU conditions and approximately 50% had reduced power outputs under deep space conditions. Average efficiency of these cells was 12.4% of 1 AU conditions of 1 SC/+25 C
The preservation of quartz grain surface textures following vehicle fire and their use in forensic enquiry
During a terrorist trial, dispute arose as to whether the temperature produced in a car fire was sufficient to destroy quartz grain surface textures. A series of seven sequential experiments showed that the temperature for quartz surface texture modification/destruction and the production of vugs, vesicles and glassy precipitation ('snowdrifting') occurred at 1200 degrees C under normal atmospheric conditions. By adding a number of man-made and natural substances, it was found that only the presence of salts depressed this modification temperature (to 900 degrees C). Experiments to determine the temperature of fire in a car indicated that the maximum temperature produced under natural conditions (810 degrees C) was insufficient to affect the quartz grain Surface textures. These results confirm the use of surface texture analysis of quartz grains recovered from the remains of cars Subjected to fire and their use as a forensic indicator. (C) 2008 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved
Propfan test assessment testbed aircraft stability and control/performance 1/9-scale wind tunnel tests
One-ninth scale wind tunnel model tests of the Propfan Test Assessment (PTA) aircraft were performed in three different NASA facilities. Wing and propfan nacelle static pressures, model forces and moments, and flow field at the propfan plane were measured in these tests. Tests started in June 1985 and were completed in January 1987. These data were needed to assure PTA safety of flight, predict PTA performance, and validate analytical codes that will be used to predict flow fields in which the propfan will operate
Hot electrons in low-dimensional phonon systems
A simple bulk model of electron-phonon coupling in metals has been
surprisingly successful in explaining experiments on metal films that actually
involve surface- or other low-dimensional phonons. However, by an exact
application of this standard model to a semi-infinite substrate with a free
surface, making use of the actual vibrational modes of the substrate, we show
that such agreement is fortuitous, and that the model actually predicts a
low-temperature crossover from the familiar T^5 temperature dependence to a
stronger T^6 log T scaling. Comparison with existing experiments suggests a
widespread breakdown of the standard model of electron-phonon thermalization in
metals
Using stochastic acceleration to place experimental limits on the charge of antihydrogen
Assuming hydrogen is charge neutral, CPT invariance demands that antihydrogen
also be charge neutral. Quantum anomaly cancellation also demands that
antihydrogen be charge neutral. Standard techniques based on measurements of
macroscopic quantities of atoms cannot be used to measure the charge of
antihydrogen. In this paper, we describe how the application of randomly
oscillating electric fields to a sample of trapped antihydrogen atoms, a form
of stochastic acceleration, can be used to place experimental limits on this
charge
Single-Calf Heifer System Profitability Compared to Other North Dakota Beef Production Systems
Production Economics, Productivity Analysis,
Gravitational Instability in Collisionless Cosmological Pancakes
The gravitational instability of cosmological pancakes composed of
collisionless dark matter in an Einstein-de Sitter universe is investigated
numerically to demonstrate that pancakes are unstable with respect to
fragmentation and the formation of filaments. A ``pancake'' is defined here as
the nonlinear outcome of the growth of a 1D, sinusoidal, plane-wave, adiabatic
density perturbation. We have used high resolution, 2D, N-body simulations by
the Particle-Mesh (PM) method to study the response of pancakes to perturbation
by either symmetric (density) or antisymmetric (bending or rippling) modes,
with corresponding wavevectors k_s and k_a transverse to the wavevector k_p of
the unperturbed pancake plane-wave. We consider dark matter which is initially
``cold'' (i.e. with no random thermal velocity in the initial conditions). We
also investigate the effect of a finite, random, isotropic, initial velocity
dispersion (i.e. initial thermal velocity) on the fate of pancake collapse and
instability. Pancakes are shown to be gravitationally unstable with respect to
all perturbations of wavelength l<l_p (where l_p= 2pi/k_p). These results are
in contradiction with the expectations of an approximate, thin-sheet energy
argument.Comment: To appear in the Astrophysical Journal (1997), accepted for
publication 10/10/96, single postscript file, 61 pages, 19 figure
Characterization of three types of silicon solar cells for SEPS Deep Space Mission. Volume 3: Current-voltage characteristics of spectrolab sculptured BSR/P+ (K7), BSR/P+ (K6.5) and BSR (K4.5) cells as a function of temperature and intensity
Three types of high performance silicon solar cells, sculptured BSR/P+(K7), BSR/P+(K6.5) and BSR(K4.5) manufactured by Spectrolab were evaluated for their low temperature and low intensity performance. Sixteen cells of each type were subjected to 11 temperatures and 9 intensities. The sculptured BSR/P+(K7) cells provided the greatest maximum power output both at 1 AU and at LTLI conditions. The average efficiencies of this cell were 14.4 percent at 1 SC/+25 deg C and 18.5 percent at 0.086 SC/-100 deg C
- …