11,445 research outputs found

    Propfan test assessment testbed aircraft stability and control/performance 1/9-scale wind tunnel tests

    Get PDF
    One-ninth scale wind tunnel model tests of the Propfan Test Assessment (PTA) aircraft were performed in three different NASA facilities. Wing and propfan nacelle static pressures, model forces and moments, and flow field at the propfan plane were measured in these tests. Tests started in June 1985 and were completed in January 1987. These data were needed to assure PTA safety of flight, predict PTA performance, and validate analytical codes that will be used to predict flow fields in which the propfan will operate

    Novel results in STM, ARPES, HREELS, Nernst, neutron, Raman, and isotope substitution experiments and their relation to bosonic modes and charge inhomogeneity, from perspective of negative-Ueff boson-fermion modelling of HTSC

    Full text link
    This paper seeks to synthesize much recent work on the HTSC materials around the latest STM results from Davis and coworkers. The conductance diffuse scattering results in particular are used as point of entry to discuss bosonic modes, both of condensed and uncondensed form. The bosonic mode picture is essential to understanding an ever growing range of observations within the HTSC field. The work is expounded within the context of the negative-U, boson-fermion modelling long advocated by the author. This general approach is presently seeing much theoretical development, into which I have looked to couple many of the experimental advances. While the formal theory is not yet sufficiently detailed to cover adequately all the experimental complexities presented by the real cuprate systems, it is clear that it affords very appreciable support to the line taken. An attempt is made throughout to say why and how it is that these events are tied so very closely to this particular set of materials.Comment: 36 pages pdf with 3 figures and 1 table included, Submitted to J. Phys. Cond. Mat

    The search behavior of terrestrial mammals

    Get PDF

    Characteristics of phonon transmission across epitaxial interfaces: a lattice dynamic study

    Full text link
    Phonon transmission across epitaxial interfaces is studied within the lattice dynamic approach. The transmission shows weak dependence on frequency for the lattice wave with a fixed angle of incidence. The dependence on azimuth angle is found to be related to the symmetry of the boundary interface. The transmission varies smoothly with the change of the incident angle. A critical angle of incidence exists when the phonon is incident from the side with large group velocities to the side with low ones. No significant mode conversion is observed among different acoustic wave branches at the interface, except when the incident angle is near the critical value. Our theoretical result of the Kapitza conductance GKG_{K} across the Si-Ge (100) interface at temperature T=200T=200 K is 4.6\times10^{8} {\rm WK}^{-1}{\rmm}^{-2}. A scaling law GKT2.87G_K \propto T^{2.87} at low temperature is also reported. Based on the features of transmission obtained within lattice dynamic approach, we propose a simplified formula for thermal conductanceacross the epitaxial interface. A reasonable consistency is found between the calculated values and the experimentally measured ones.Comment: 8 figure

    Polyhedra in loop quantum gravity

    Full text link
    Interwiners are the building blocks of spin-network states. The space of intertwiners is the quantization of a classical symplectic manifold introduced by Kapovich and Millson. Here we show that a theorem by Minkowski allows us to interpret generic configurations in this space as bounded convex polyhedra in Euclidean space: a polyhedron is uniquely described by the areas and normals to its faces. We provide a reconstruction of the geometry of the polyhedron: we give formulas for the edge lengths, the volume and the adjacency of its faces. At the quantum level, this correspondence allows us to identify an intertwiner with the state of a quantum polyhedron, thus generalizing the notion of quantum tetrahedron familiar in the loop quantum gravity literature. Moreover, coherent intertwiners result to be peaked on the classical geometry of polyhedra. We discuss the relevance of this result for loop quantum gravity. In particular, coherent spin-network states with nodes of arbitrary valence represent a collection of semiclassical polyhedra. Furthermore, we introduce an operator that measures the volume of a quantum polyhedron and examine its relation with the standard volume operator of loop quantum gravity. We also comment on the semiclassical limit of spinfoams with non-simplicial graphs.Comment: 32 pages, many figures. v2 minor correction

    Elasticity Theory Connection Rules for Epitaxial Interfaces

    Full text link
    Elasticity theory provides an accurate description of the long-wavelength vibrational dynamics of homogeneous crystalline solids, and with supplemental boundary conditions on the displacement field can also be applied to abrupt heterojunctions and interfaces. The conventional interface boundary conditions, or connection rules, require that the displacement field and its associated stress field be continuous through the interface. We argue, however, that these boundary conditions are generally incorrect for epitaxial interfaces, and we give the general procedure for deriving the correct conditions, which depend essentially on the detailed microscopic structure of the interface. As a simple application of our theory we analyze in detail a one-dimensional model of an inhomogeneous crystal, a chain of harmonic oscillators with an abrupt change in mass and spring stiffness parameters. Our results have implications for phonon dynamics in nanostructures such as superlattices and nanoparticles, as well as for the thermal boundary resistance at epitaxial interfaces.Comment: 7 pages, Revte

    Fundamental Discreteness Limitations of Cosmological N-Body Clustering Simulations

    Full text link
    We explore some of the effects that discreteness and two-body scattering may have on N-body simulations with ``realistic'' cosmological initial conditions. We use an identical subset of particles from the initial conditions for a 1283128^3 Particle-Mesh (PM) calculation as the initial conditions for a variety P3^3M and Tree code runs. We investigate the effect of mass resolution (the mean interparticle separation) since most ``high resolution'' codes only have high resolution in gravitational force. The phase-insensitive two--point statistics, such as the power spectrum (autocorrelation) are somewhat affected by these variations, but phase-sensitive statistics show greater differences. Results converge at the mean interparticle separation scale of the lowest mass-resolution code. As more particles are added, but the force resolution is held constant, the P3^3M and the Tree runs agree more and more strongly with each other and with the PM run which had the same initial conditions. This shows high particle density is necessary for correct time evolution, since many different results cannot all be correct. However, they do not so converge to a PM run which continued the fluctuations to small scales. Our results show that ignoring them is a major source of error on comoving scales of the missing wavelengths. This can be resolved by putting in a high particle density. Since the codes never agree well on scales below the mean comoving interparticle separation, we find little justification for quantitative predictions on this scale. Some measures vary by 50%, but others can be off by a factor of three or more. Our results suggest possible problems with the density of galaxy halos, formation of early generation objects such as QSO absorber clouds, etc.Comment: Revised version to be published in Astrophysical Journal. One figure changed; expanded discussion, more information on code parameters. Latex, 44 pages, including 19 figures. Higher resolution versions of Figures 10-15 available at: ftp://kusmos.phsx.ukans.edu/preprints/nbod

    Recovering the Primordial Density Fluctuations: A comparison of methods

    Full text link
    We present a comparative study of six different methods for reversing the gravitational evolution of a cosmological density field to recover the primordial fluctuations: linear theory, the Gaussianization mapping scheme, two different quasi-linear dynamical schemes based on the Zel'dovich approximation, a Hybrid dynamical-Gaussianization method and the Path Interchange Zel'dovich Approximation (PIZA). The final evolved density field from an N-body simulation constitutes our test case. We use a variety of statistical measures to compare the initial density field recovered from it to the true initial density field, using each of the six different schemes. These include point-by-point comparisons of the density fields in real space, the individual modes in Fourier space, as well as global statistical properties such as the genus, the PDF of the density, and the distribution of peak heights and their shapes. We find linear theory to be the most inaccurate of all the schemes. The Gaussianization scheme is the least accurate after linear theory. The two quasi-linear dynamical schemes are more accurate than Gaussianization, although they break down quite drastically when used outside their range of validity - the quasi-linear regime. The complementary beneficial aspects of the dynamical and the Gaussianization schemes are combined in the Hybrid method. We find this Hybrid scheme to be more accurate and robust than either Gaussianization or the dynamical method alone. The PIZA scheme performs substantially better than the others in all point-by-point comparisons. However, it produces an oversmoothed initial density field, with a smaller number of peaks than expected, but recovers the PDF of the initial density with impressive accuracy on scales as small as 3Mpc/h.Comment: 39 pages, including 13 Figures, submitted to Ap
    corecore