1,521 research outputs found

    Introduction to Fungi

    Get PDF

    How is New England coastal sea level related to the Atlantic meridional overturning circulation at 26 degrees N?

    Get PDF
    Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters, 46(10), (2019): 5351-5360, doi: 10.1029/2019GL083073.Monthly observations are used to study the relationship between the Atlantic meridional overturning circulation (AMOC) at 26° N and sea level (ζ) on the New England coast (northeastern United States) over nonseasonal timescales during 2004–2017. Variability in ζ is anticorrelated with AMOC on intraseasonal and interannual timescales. This anticorrelation reflects the stronger underlying antiphase relationship between ageostrophic Ekman‐related AMOC transports due to local zonal winds across 26° N and ζ changes arising from local wind and pressure forcing along the coast. These distinct local atmospheric variations across 26° N and along coastal New England are temporally correlated with one another on account of large‐scale atmospheric teleconnection patterns. Geostrophic AMOC contributions from the Gulf Stream through the Florida Straits and upper‐mid‐ocean transport across the basin are together uncorrelated with ζ. This interpretation contrasts with past studies that understood ζ and AMOC as being in geostrophic balance with one another.This work was supported by NSF awards OCE‐1558966, OCE‐1834739, and OCE‐1805029; NASA contract NNH16CT01C; and the J. Lamar Worzel Assistant Scientist Fund and the Penzance Endowed Fund in Support of Assistant Scientists at the Woods Hole Oceanographic Institution. Helpful comments from Magdalena Andres and two anonymous reviewers are acknowledged. Tide‐gauge sea level data were provided by the Permanent Service for Mean Sea Level (www.psmsl.org). Observations of the overturning circulation were taken from the RAPID data download page (www.rapid.ac.uk/data.php). Time series of the North Atlantic Oscillation and Arctic Oscillation were downloaded from the National Oceanic and Atmospheric Administration Earth System Research Laboratory Physical Sciences Division website (www.esrl.noaa.gov/psd/). Reanalysis wind stress and air pressure fields were provided by the Community Storage Server at Woods Hole Oceanographic Institution (http://cmip5.whoi.edu/).2019-11-0

    The CS sulphation motifs 4C3, 7D4, 3B3[-]; and perlecan identify stem cell populations and niches, activated progenitor cells and transitional tissue development in the fetal human elbow

    Get PDF
    We compared the immunohistochemical distribution of (i) the novel chondroitin sulphate (CS) sulphation motifs 7D4, 4C3 and 3B3[-], (ii) native heparan sulphate (HS) and Δ-HS ‘stubs’ generated by heparitinase III digestion and (iii) the HS-proteoglycan, perlecan, in the foetal human elbow joint. Putative stem cell populations associated with hair bulbs, humeral perichondrium, humeral and ulnar rudiment stromal/perivascular tissues expressed the CS motifs 4C3, 7D4 and 3B3[-] as well as perlecan in close association but not co-localised. Chondrocytes in the presumptive articular cartilage of the foetal elbow expressed the 4C3 and 7D4 CS sulphation motifs consistent with earlier studies on the expression of these motifs in knee cartilage following joint cavitation. The present study also indicated that hair bulbs, skin, perichondrium and rudiment stroma were all perlecan rich progenitor cell niches that contributed to the organisation and development of the human foetal elbow joint and associated connective tissues. One of the difficulties in determining the precise role of stem cells in tissue development and repair processes is their short engraftment period and the lack of specific markers which differentiate the activated stem cell lineages from the resident cells. The CS sulphation motifs 7D4, 4C3 and 3B3[-] decorate cell surface proteoglycans on activated stem/progenitor cells and thus can be used to identify these cells in transitional areas of tissue development and in repair tissues and may be applicable to determining a more precise mode of action of stem cells in these processes. Isolation of perlecan from 12-14 week gestational age foetal knee rudiments demonstrated that perlecan in these foetal tissues was a HS-CS hybrid proteoglyca

    Comparison of Chlamydia antigen and AD-like pathology in the brains of BALB/c mice following intranasal infection with Chlamydia muridarum or Chlamydia pneumoniae

    Get PDF
    Previous research indicates BALB/c mice inoculated with Chlamydia pneumoniae (Cpn) demonstrated AD-like pathology which suggests that this mouse model is valid for studying the pathogenesis implicated in Alzheimer’s disease (AD). Studies have demonstrated that Chlamydia trachomatis (Ctr) can disseminate from its primary site of infection and plays a major role in the induction of reactive arthritis. The objectives of this lab are: (1) to identify and localize Chlamydia antigens in the brains of BALB/c mice infected with C. muridarum and (2) to determine if infection with C. muridarum induces AD-like pathology comparable to Cpn. Using mouse adapted respiratory isolates of C. muridarum, we investigated whether C. muridarum disseminated from the respiratory tract to the brain. Mice were intranasally infected with plaqued C small Weiss (CSW) or plaqued mouse pneumonitis Weiss (MoPn Weiss). Brain tissue was isolated at 2 months post-infection. Serial sections from brains infected mice were analyzed for amyloid or Chlamydia antigens. Preliminary analysis of brain tissue demonstrated no detectable difference in C. muridarum antigen between mice receiving 1 x105 IFU and mice receiving 1 x101 IFU, whereas a small but detectable difference was identified in amyloid-specific labeling between these two experimental groups. In contrast, prominent Chlamydia-specific labeling was identified in the brains of Cpn-infected mice as well as substantial amyloid deposition at 2 months p.i.. These data suggest that, relative to Cpn AR-39 infection, C. muridarum infection is a weaker stimulus for inflammation, resulting in decreased amyloid deposition in the brains of BALB/c mice

    Estimating Greenland tidewater glacier retreat driven by submarine melting

    Get PDF
    This research has been supported by the National Aeronautics and Space Administration, Goddard Space Flight Center (postdoctoral program grant), the National Science Foundation, Office of Polar Programs (grant no. 1513396), the Netherlands Earth System Science Centre (grant no. 024.002.001), the Fonds De La Recherche Scientifique – FNRS (grant no. 2.5020.11),the Fédération Wallonie-Bruxelles (grant no. 1117545), the National Science Foundation, Division of Polar Programs (grant no. 1916566), the National Science Foundation, Office of Polar Programs (grant no. 1756272) and the National Aeronautics and Space Administration (grant no. NNX17AI03G).The effect of the North Atlantic Ocean on the Greenland Ice Sheet through submarine melting of Greenland's tidewater glacier calving fronts is thought to be a key driver of widespread glacier retreat, dynamic mass loss and sea level contribution from the ice sheet. Despite its critical importance, problems of process complexity and scale hinder efforts to represent the influence of submarine melting in ice-sheet-scale models. Here we propose parameterizing tidewater glacier terminus position as a simple linear function of submarine melting, with submarine melting in turn estimated as a function of subglacial discharge and ocean temperature. The relationship is tested, calibrated and validated using datasets of terminus position, subglacial discharge and ocean temperature covering the full ice sheet and surrounding ocean from the period 1960–2018. We demonstrate a statistically significant link between multi-decadal tidewater glacier terminus position change and submarine melting and show that the proposed parameterization has predictive power when considering a population of glaciers. An illustrative 21st century projection is considered, suggesting that tidewater glaciers in Greenland will undergo little further retreat in a low-emission RCP2.6 scenario. In contrast, a high-emission RCP8.5 scenario results in a median retreat of 4.2 km, with a quarter of tidewater glaciers experiencing retreat exceeding 10 km. Our study provides a long-term and ice-sheet-wide assessment of the sensitivity of tidewater glaciers to submarine melting and proposes a practical and empirically validated means of incorporating ocean forcing into models of the Greenland ice sheet.Publisher PDFPeer reviewe

    FieldML

    Get PDF
    FieldML is an open format for storing and exchanging models containing field information. It is able to represent a wide variety of field value types, including scalar, vector, tensor, logical, and strings. Fields are defined over domains explicitly in terms of functions. Domains may be nested to form embedding hierarchies

    The Initial Configuration of Young Stellar Clusters: A K-band Number Counts Analysis of the Surface Density of Stars

    Full text link
    We present an analysis of K-band stellar distributions for the young stellar clusters GGD 12-15, IRAS 20050+2720, and NGC 7129. We find that the two deeply embedded clusters, GGD 12-15 and IRAS 20050+2720, are not azimuthally symmetric and show a high degree of structure which traces filamentary structure observed in 850 micron emission maps. In contrast, the NGC 7129 cluster is circularly symmetric, less dense, and anti-correlated to 850 micron emission, suggesting recent gas expulsion and dynamical expansion have occured. We estimate stellar volume densities from nearest neighbor distances, and discuss the impact of these densities on the evolution of circumstellar disks and protostellar envelopes in these regions.Comment: 44 pages, 26 figures, Accepted to ApJ. Changes include extinction mapping, Monte Carlo field star modeling, and Nyquist sampled azimuthal stellar distributions. A version with full resolution figures is available at http://astro.pas.rochester.edu/~rguter/preprints/gutermuth_sd.tar.g

    Twenty-first century ocean forcing of the Greenland ice sheet for modelling of sea level contribution

    Get PDF
    This research has been supported by the National Science Foundation, Office of Polar Programs (grant no. 1916566), the National Science Foundation, Division of Ocean Sciences (grant no. 1756272), the National Aeronautics and Space Administration (grant no. NNX17AI03G), the National Science Foundation, Office of Polar Programs (grant nos. 1513396 and 1504230), the Netherlands Earth System Science Centre (grant no. 024.002.001), the Fonds De La Recherche Scientifique – FNRS (grant no. 2.5020.11), and the FédérationWallonie-Bruxelles (grant no. 1117545).Changes in ocean temperature and salinity are expected to be an important determinant of the Greenland ice sheet's future sea level contribution. Yet, simulating the impact of these changes in continental-scale ice sheet models remains challenging due to the small scale of key physics, such as fjord circulation and plume dynamics, and poor understanding of critical processes, such as calving and submarine melting. Here we present the ocean forcing strategy for Greenland ice sheet models taking part in the Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6), the primary community effort to provide 21st century sea level projections for the Intergovernmental Panel on Climate Change Sixth Assessment Report. Beginning from global atmosphere-ocean general circulation models, we describe two complementary approaches to provide ocean boundary conditions for Greenland ice sheet models, termed the "retreat" and "submarine melt" implementations. The retreat implementation parameterises glacier retreat as a function of projected subglacial discharge and ocean thermal forcing, is designed to be implementable by all ice sheet models and results in retreat of around 1 and 15 km by 2100 in RCP2.6 and 8.5 scenarios, respectively. The submarine melt implementation provides estimated submarine melting only, leaving the ice sheet model to solve for the resulting calving and glacier retreat and suggests submarine melt rates will change little under RCP2.6 but will approximately triple by 2100 under RCP8.5. Both implementations have necessarily made use of simplifying assumptions and poorly constrained parameterisations and, as such, further research on submarine melting, calving and fjord-shelf exchange should remain a priority. Nevertheless, the presented framework will allow an ensemble of Greenland ice sheet models to be systematically and consistently forced by the ocean for the first time and should result in a significant improvement in projections of the Greenland ice sheet's contribution to future sea level change.Publisher PDFPeer reviewe
    corecore