34 research outputs found
Deeply subrecoil two-dimensional Raman cooling
We report the implementation of a two-dimensional Raman cooling scheme using
sequential excitations along the orthogonal axes. Using square pulses, we have
cooled a cloud of ultracold Cesium atoms down to an RMS velocity spread of
0.39(5) recoil velocity, corresponding to an effective temperature of 30 nK
(0.15 T_rec). This technique can be useful to improve cold atom atomic clocks,
and is particularly relevant for clocks in microgravity.Comment: 8 pages, 6 figures, submitted to Phys. Rev.
Sharpening Low-Energy, Standard-Model Tests via Correlation Coefficients in Neutron Beta-Decay
The correlation coefficients a, A, and B in neutron beta-decay are
proportional to the ratio of the axial-vector to vector weak coupling
constants, g_A/g_V, to leading recoil order. With the advent of the next
generation of neutron decay experiments, the recoil-order corrections to these
expressions become experimentally accessible, admitting a plurality of Standard
Model (SM) tests. The measurement of both a and A, e.g., allows one to test the
conserved-vector-current (CVC) hypothesis and to search for second-class
currents (SCC) independently. The anticipated precision of these measurements
suggests that the bounds on CVC violation and SCC from studies of nuclear
beta-decay can be qualitatively bettered. Departures from SM expectations can
be interpreted as evidence for non-V-A currents.Comment: 4 pages, REVTeX, intro. broadened, typos fixed, to appear in PR
Constraints on T-Odd, P-Even Interactions from Electric Dipole Moments
We construct the relationship between nonrenormalizable,effective,
time-reversal violating (TV) parity-conserving (PC) interactions of quarks and
gauge bosons and various low-energy TVPC and TV parity-violating (PV)
observables. Using effective field theory methods, we delineate the scenarious
under which experimental limits on permanent electric dipole moments (EDM's) of
the electron, neutron, and neutral atoms as well as limits on TVPC observables
provide the most stringent bounds on new TVPC interactions. Under scenarios in
which parity invariance is restored at short distances, the one-loop EDM of
elementary fermions generate the most severe constraints. The limits derived
from the atomic EDM of Hg are considerably weaker. When parity symmetry
remains broken at short distances, direct TVPC search limits provide the least
ambiguous bounds. The direct limits follow from TVPC interactions between two
quarks.Comment: 43 pages, 9 figure
A clean, bright, and versatile source of neutron decay products
We present a case study on a new type of cold neutron beam station for the
investigation of angular correlations in the beta-decay of free neutrons. With
this beam station, called PERC, the 'active decay volume' lies inside the
neutron guide, and the charged neutron decay products are magnetically guided
towards the end of the neutron guide. Hence, the guide delivers at its exit a
beam of decay electrons and protons, under well-defined and precisely variable
conditions, which can be well separated from the cold neutron beam. In this way
a general-purpose source of neutron decay products is obtained which can be
used for various different experiments in neutron decay correlation
spectroscopy. A gain in phase space density of several orders of magnitude can
be achieved with PERC, as compared to existing neutron decay spectrometers.
Neutron beam related background is separately measurable in PERC, and magnetic
mirror effects on the charged neutron decay products and edge effects in the
active neutron beam volume are both strongly suppressed. Therefore the spectra
and angular distributions of the emerging decay particles will be
distortion-free on the level of 10^-4, more than 10 times better than achieved
today.Comment: 20 pages, 6 figure
New limit on the D coefficient in polarized neutron decay
We describe an experiment that has set new limits on the time reversal invariance violating D coefficient in neutron beta decay. The emiT experiment measured the angular correlation [J] . (p(e) x p(p)) using an octagonal symmetry that optimizes electron-proton coincidence rates. The result is D=[-0.6+/-1.2(stat)+/-0.5(syst)] x 10(-3). This improves constraints on the phase of g(A)/g(V) and limits contributions to T violation due to leptoquarks. This paper presents details of the experiment, data analysis, and the investigation of systematic effects
Searching for time reversal invariance violation in polarized neutron decay
Time reversal invariance violation is tightly constrained in the Standard Model, and the existence of a T-violating effect above the predicted level would be an indication of new physics. A sensitive probe of this symmetry in the weak interaction is the measurement of the D-coefficient in neutron decay. This parameter characterizes the triple-correlation of neutron spin, electron momentum, and neutrino (or proton) momentum, which changes sign under time reversal. The emiT experiment, now on line, attempts to improve the measurement of D,D, whose current average is 0.3±1.5×10−3.0.3±1.5×10−3. © 1997 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87907/2/399_1.pd
The neutron and its role in cosmology and particle physics
Experiments with cold and ultracold neutrons have reached a level of
precision such that problems far beyond the scale of the present Standard Model
of particle physics become accessible to experimental investigation. Due to the
close links between particle physics and cosmology, these studies also permit a
deep look into the very first instances of our universe. First addressed in
this article, both in theory and experiment, is the problem of baryogenesis ...
The question how baryogenesis could have happened is open to experimental
tests, and it turns out that this problem can be curbed by the very stringent
limits on an electric dipole moment of the neutron, a quantity that also has
deep implications for particle physics. Then we discuss the recent spectacular
observation of neutron quantization in the earth's gravitational field and of
resonance transitions between such gravitational energy states. These
measurements, together with new evaluations of neutron scattering data, set new
constraints on deviations from Newton's gravitational law at the picometer
scale. Such deviations are predicted in modern theories with extra-dimensions
that propose unification of the Planck scale with the scale of the Standard
Model ... Another main topic is the weak-interaction parameters in various
fields of physics and astrophysics that must all be derived from measured
neutron decay data. Up to now, about 10 different neutron decay observables
have been measured, much more than needed in the electroweak Standard Model.
This allows various precise tests for new physics beyond the Standard Model,
competing with or surpassing similar tests at high-energy. The review ends with
a discussion of neutron and nuclear data required in the synthesis of the
elements during the "first three minutes" and later on in stellar
nucleosynthesis.Comment: 91 pages, 30 figures, accepted by Reviews of Modern Physic
Stimulation of protein synthesis and expansion of pig blastocysts by insulin in vitro
Present evidence indicates that insulin may act as a growth factor during preimplantation development. This hypothesis has been tested on pig blastocysts by determining the effect of insulin on protein synthesis and blastocyst expansion over 24 h. Blastocysts were collected from superovulated gilts or sows on Day 5 or 6 and incubated overnight in a modified BMOC2 medium. Those that were cultured with 1. 7 nM insulin had 14% larger radii, and were 36% more active in their incorporation of [H]leucine (protein synthesis) than those that had been cultured in non-supplemented medium. There was a significant linear correlation between the rate of protein synthesis and the radius of blastocysts when all blastocysts and only those cultured with insulin were examined, but the correlation for the blastocysts in non-supplemented medium was just outside statistical significance. The regression coefficient for the insulin-treated blastocysts was 132% of that for blastocysts cultured in unsupplemented medium; this suggests that insulin increased the size of blastocysts and the rate of protein synthesis per unit size. The results indicate that pig blastocysts respond to physiological levels of insulin in similar fashion to those of mice and cattle, supporting the hypothesis that insulin may act as a general embryonic growth factor. Because of the cross reaction between the insulin receptor and the ligands, insulin and insulinlike growth factor 1 (IGF-1), the results also suggest that IGF-1, reported to be present in pig uterine fluid, could be involved in this stimulation in utero