97 research outputs found
Effects of thin Covers on the Release of Coal Gangue Contaminants
AbstractThe effects of the different ecological covers on the release of coal gangue contaminants were evaluated by the batch pot of experiments. The tests were carried for 12 weeks on the coal gangue by different approaches, which were the coverings with 1-2cm artificial matrix that contained acid buffer and plant ameliorant(Tr1:thin matrix cover), 1-2cm slurry of artificial matrix (Tr2: thin coating),and control groups(CK),and planted Lolium perenne, Chenopodium ambrosioides L, and sporopollen of Funaria hygrometrica Hedw on the surface layer, respectively. During the pot experiments, the leachates were collected and analyzed for pH, electrical conductivity (EC), and concentration of Fe, Mn, Cu, Zn, SO42-, F- .The results showed that the coal gangue was uninterruptedly oxidized to form acidic when it was exposed to open air, and 3 or 5 weeks later, dissolution of Fe, Mn, Cu, Zn and SO42-, F− in the coal gangue started and increased significantly, and this is a typical acid mine drainage (AMD) formation process. Compared to the CK, thin matrix cover could retard the allotted time of the production of acidity and release of contaminants, but was easily invalid to long-term. The pH of thin coating was at a high value with time, and the concentration of Fe, Mn, Cu, Zn, SO42− and F- reduced significantly. The data indicated that the thin coating could effectively stop or retard the production of acidity and the release of contaminants generated by coal gangue. It suggests that thin coating covers on the coal gangue could be a suitable method for pollution abatement and controlling on-site
Organizational climate of kindergartens and teacher professional learning: mediating effect of teachers’ collective efficacy and moderating effect of mindfulness in teaching
IntroductionThis study was aimed at testing a moderated mediation model of teaching mindfulness and teachers’ collective efficacy in the relationships between the organizational climate of kindergartens and teacher professional learning.MethodsA sample of 1,095 kindergarten teachers completed self-report questionnaires assessing their perceptions of the organizational climate of kindergartens, collective efficacy, teaching mindfulness, and professional learning.ResultsControlling for teaching experience and kindergarten level, the results show that kindergarten organizational climate significantly and positively predicted teacher professional learning and the collective efficacy of teachers played a partial mediating role between them.Furthermore, moderation analysis revealed that teaching mindfulness moderated the relationship between kindergarten organizational climate and teacher professional learning.DiscussionThese results expand our understanding of how the organizational climate of kindergartens affects teacher professional learning. In practice, professional learning of kindergarten teachers can be facilitated by creating an open organizational climate and improving their ability to perceive the collective. Furthermore, the moderating role of teaching mindfulness suggests that intervening in teachers’ teaching mindfulness possibly is an influential way to maximize the impact of kindergarten organizational climate on professional learning
Comprehensive analysis, immune, and cordycepin regulation for SOX9 expression in pan-cancers and the matched healthy tissues
SRY-box transcription factor 9 (SOX9) (OMIM 608160) is a transcription factor. The expression of SOX9 in pan-cancers and the regulation by small molecules in cancer cell lines are unclear. In the current study, we comprehensively analyzed the expression of SOX9 in normal tissues, tumor tissues and their matched healthy tissues in pan-cancers. The study examined the correlation between immunomodulators and immune cell infiltrations in normal and tumor tissues. Cordycepin (CD), an adenosine analog for SOX9 expression regulation, was also conducted on cancer cells. The results found that SOX9 protein is expressed in a variety of organs, including high expression in 13 organs and no expression in only two organs; in 44 tissues, there was high expression in 31 tissues, medium expression in four tissues, low expression in two tissues, and no expression in the other seven tissues. In pan-cancers with 33 cancer types, SOX9 expression was significantly increased in fifteen cancers, including CESC, COAD, ESCA, GBM, KIRP, LGG, LIHC, LUSC, OV, PAAD, READ, STAD, THYM, UCES, and UCS, but significantly decreased in only two cancers (SKCM and TGCT) compared with the matched healthy tissues. It suggests that SOX9 expression is upregulated in the most cancer types (15/33) as a proto-oncogene. The fact that the decrease of SOX9 expression in SKCM and the increase of SOX9 in the cell lines of melanoma inhibit tumorigenicity in both mouse and human ex vivo models demonstrates that SOX9 could also be a tumor suppressor. Further analyzing the prognostic values for SOX9 expression in cancer individuals revealed that OS is long in ACC and short in LGG, CESC, and THYM, suggesting that high SOX9 expression is positively correlated with the worst OS in LGG, CESC, and THYM, which could be used as a prognostic maker. In addition, CD inhibited both protein and mRNA expressions of SOX9 in a dose-dependent manner in 22RV1, PC3, and H1975 cells, indicating CD’s anticancer roles likely via SOX9 inhibition. Moreover, SOX9 might play an important role in tumor genesis and development by participating in immune infiltration. Altogether, SOX9 could be a biomarker for diagnostics and prognostics for pan-cancers and an emerging target for the development of anticancer drugs
A Novel Variant of the FZD4 Gene in a Chinese Family Causes Autosomal Dominant Familial Exudative Vitreoretinopathy
Background/Aims: Familial exudative vitreoretinopathy (FEVR) is a complex hereditary eye disorder characterized by incomplete development of the retinal vasculature, thereby affecting retinal angiogenesis. Methods: In this study, a Chinese autosomal dominant FEVR pedigree was recruited. Ophthalmic examinations were performed, targeted next-generation sequencing was used to identify the causative gene, and Sanger sequencing was conducted to verify the candidate mutation. Co-segregation analysis was performed to evaluate pathogenicity. Semi-quantitative reverse transcription-PCR was applied to investigate the spatial and temporal expression patterns of the frizzled class receptor 4 (FZD4) gene in the mouse. Results: A novel heterozygous, deleterious variant of the FZD4 gene, c.A749G (p.Y250C), was identified in this FEVR pedigree, which co-segregated with the clinical phenotype. The amino acid tyrosine (Y) is highly conserved both orthologously and paralogously. The FZD4 gene was highly expressed in the retina, sclera of the eye, ovary, kidney, and liver; ubiquitously expressed in other tissues; and highly expressed in 6 different developmental stages/times of retinal tissue. Conclusion: Our study is the first to identify that the novel heterozygous variant c.A749G (p.Y250C) in the FZD4 gene may be the disease-causing mutation in this FEVR family, extending its mutation spectrum. These findings further our understanding of the molecular pathogenesis of FEVR and will facilitate the development of methods for the diagnosis, prevention, and genetic counseling of this disease
Genetic Identification and Molecular Modeling Characterization Reveal a Novel PROM1 Mutation in Stargardt4-like Macular Dystrophy
Stargardt disease-4 (STGD4) is an autosomal dominant complex, genetically heterogeneous macular degeneration/dystrophy (MD) disorder. In this paper, we used targeted next generation sequencing and multiple molecular dynamics analyses to identify and characterize a disease-causing genetic variant in four generations of a Chinese family with STGD4-like MD. We found a novel heterozygous missense mutation, c.734T\u3eC (p.L245P) in the PROM1 gene. Structurally, this mutation most likely impairs PROM1 protein stability, flexibility, and amino acid interaction network after changing the amino acid residue Leucine into Proline in the basic helix-loop-helix leucine zipper domain. Molecular dynamic simulation and principal component analysis provide compelling evidence that this PROM1 mutation contributes to disease causativeness or susceptibility variants in patients with STGD4-like MD. Thus, this finding defines new approaches in genetic characterization, accurate diagnosis, and prevention of STGD4-like MD
Radiomics based on 18F-FDG PET/CT for prediction of pathological complete response to neoadjuvant therapy in non-small cell lung cancer
PurposeThis study aimed to establish and evaluate the value of integrated models involving 18F-FDG PET/CT-based radiomics and clinicopathological information in the prediction of pathological complete response (pCR) to neoadjuvant therapy (NAT) for non-small cell lung cancer (NSCLC).MethodsA total of 106 eligible NSCLC patients were included in the study. After volume of interest (VOI) segmentation, 2,016 PET-based and 2,016 CT-based radiomic features were extracted. To select an optimal machine learning model, a total of 25 models were constructed based on five sets of machine learning classifiers combined with five sets of predictive feature resources, including PET-based alone radiomics, CT-based alone radiomics, PET/CT-based radiomics, clinicopathological features, and PET/CT-based radiomics integrated with clinicopathological features. Area under the curves (AUCs) of receiver operator characteristic (ROC) curves were used as the main outcome to assess the model performance.ResultsThe hybrid PET/CT-derived radiomic model outperformed PET-alone and CT-alone radiomic models in the prediction of pCR to NAT. Moreover, addition of clinicopathological information further enhanced the predictive performance of PET/CT-derived radiomic model. Ultimately, the support vector machine (SVM)-based PET/CT radiomics combined clinicopathological information presented an optimal predictive efficacy with an AUC of 0.925 (95% CI 0.869–0.981) in the training cohort and an AUC of 0.863 (95% CI 0.740–0.985) in the test cohort. The developed nomogram involving radiomics and pathological type was suggested as a convenient tool to enable clinical application.ConclusionsThe 18F-FDG PET/CT-based SVM radiomics integrated with clinicopathological information was an optimal model to non-invasively predict pCR to NAC for NSCLC
Bioinformatics and systems biology approach to identify the pathogenetic link of neurological pain and major depressive disorder
Neurological pain (NP) is always accompanied by symptoms of depression, which seriously affects physical and mental health. In this study, we identified the common hub genes (Co-hub genes) and related immune cells of NP and major depressive disorder (MDD) to determine whether they have common pathological and molecular mechanisms. NP and MDD expression data was downloaded from the Gene Expression Omnibus (GEO) database. Common differentially expressed genes (Co-DEGs) for NP and MDD were extracted and the hub genes and hub nodes were mined. Co-DEGs, hub genes, and hub nodes were analyzed for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment. Finally, the hub nodes, and genes were analyzed to obtain Co-hub genes. We plotted Receiver operating characteristic (ROC) curves to evaluate the diagnostic impact of the Co-hub genes on MDD and NP. We also identified the immune-infiltrating cell component by ssGSEA and analyzed the relationship. For the GO and KEGG enrichment analyses, 93 Co-DEGs were associated with biological processes (BP), such as fibrinolysis, cell composition (CC), such as tertiary granules, and pathways, such as complement, and coagulation cascades. A differential gene expression analysis revealed significant differences between the Co-hub genes ANGPT2, MMP9, PLAU, and TIMP2. There was some accuracy in the diagnosis of NP based on the expression of ANGPT2 and MMP9. Analysis of differences in the immune cell components indicated an abundance of activated dendritic cells, effector memory CD8+ T cells, memory B cells, and regulatory T cells in both groups, which were statistically significant. In summary, we identified 6 Co-hub genes and 4 immune cell types related to NP and MDD. Further studies are needed to determine the role of these genes and immune cells as potential diagnostic markers or therapeutic targets in NP and MDD
The Use of Co-Culturing in Solid Substrate Cultivation and Possible Solutions to Scientific Challenges
This perspective systematically summarizes the use of solid substrate co‐cultures in agriculture, food, plant, and industrial biotechnology applications. The summarization is organized by organism, i.e. fungus, bacteria, yeast and then co‐cultivation of either two or three organisms. Generally, in solid substrate co‐culture, the organisms synergistically penetrate and degrade the solid substrate, thereby increasing product yield and productivity over a monoculture. Efforts to increase co‐culture performance include optimizing process parameters (pH, temperature, moisture, and oxygen demand) and defining the acceptable types of substrate. Scientific challenges exist in understanding the interactions between microbial stains, such as viability, suite of products, and bio‐transformations. The perspective details possible solutions to these challenges and highlights future research directions for co‐cultures using either solid or liquid fermentation
- …