188 research outputs found

    Unicameral Bone Cyst in the Proximal Humerus with Secondary Infection in an 18 -Month-Old Foal

    Get PDF
    An 18-month-old warmblood filly was 4/5 lame on the front right limb at referral and showed severe swelling of the right shoulder region and pain during manipulation of the shoulder region. Radiography revealed a roundish 5 × 7 cm radiolucent area with defined borders within the greater tubercle and the presence of a fracture of the lateral tubercle associated with the cyst. Cellular blood count was 27,500 WBC/μL and serum biochemical analyses revealed fibrinogen of 855 mg/dL. The fractured bone was removed surgically; the cyst debrided and filled with autologous cancellous bone graft. Three and five weeks after surgery the filly was reoperated on because of an osseous sequestrum and a periostal defect on the distal dorsolateral aspect of the pastern of the right hind limb and a septic synovitis of the DFTS of the left hind limb. Fifteen month after surgery the filly was not lame and was introduced to training. Unicameral bone cysts (UBC) are well described lesions, often associated to pathologic fracture in the proximal humerus of children but, until present, no scientific report exists of UBC in the foal. The prompt surgical management had a favorable outcome

    Avoiding the pitfalls of gene set enrichment analysis with SetRank.

    Get PDF
    The purpose of gene set enrichment analysis (GSEA) is to find general trends in the huge lists of genes or proteins generated by many functional genomics techniques and bioinformatics analyses. Here we present SetRank, an advanced GSEA algorithm which is able to eliminate many false positive hits. The key principle of the algorithm is that it discards gene sets that have initially been flagged as significant, if their significance is only due to the overlap with another gene set. The algorithm is explained in detail and its performance is compared to that of other methods using objective benchmarking criteria. Furthermore, we explore how sample source bias can affect the results of a GSEA analysis. The benchmarking results show that SetRank is a highly specific tool for GSEA. Furthermore, we show that the reliability of results can be improved by taking sample source bias into account. SetRank is available as an R package and through an online web interface

    Surgical treatment of a complicated distal tibia epiphyseal Salter–Harris type I fracture in a yearling

    Get PDF
    This article describes the management of a complicated distal epiphyseal Salter–Harris type I fracture of the left tibia in a yearling horse. Closed reduction and internal fixation was attempted in the first surgery using tension band wires. Due to fracture instability 2 weeks after surgery, a full‐limb transfixation pin cast was applied to the tibia and maintained for 7 weeks to prevent further fracture displacement and to achieve axial alignment. The full‐limb cast was maintained for a total of 12 weeks, including the time with the transfixation pin cast. Cast sores and tendon laxity resolved without further complications. Ten months after the first surgery, the fracture had radiographically healed, and the horse was sound at the walk and trot in a straight line

    Monocyte biology conserved across species: Functional insights from cattle.

    Get PDF
    Similar to human monocytes, bovine monocytes can be split into CD14highCD16- classical, CD14highCD16high intermediate and CD14-/dimCD16high nonclassical monocytes (cM, intM, and ncM, respectively). Here, we present an in-depth analysis of their steady-state bulk- and single-cell transcriptomes, highlighting both pronounced functional specializations and transcriptomic relatedness. Bulk gene transcription indicates pro-inflammatory and antibacterial roles of cM, while ncM and intM appear to be specialized in regulatory/anti-inflammatory functions and tissue repair, as well as antiviral responses and T-cell immunomodulation. Notably, intM stood out by high expression of several genes associated with antigen presentation. Anti-inflammatory and antiviral functions of ncM are further supported by dominant oxidative phosphorylation and selective strong responses to TLR7/8 ligands, respectively. Moreover, single-cell RNA-seq revealed previously unappreciated heterogeneity within cM and proposes intM as a transient differentiation intermediate between cM and ncM

    Batch effects in a multiyear sequencing study: false biological trends due to changes in read lengths

    Full text link
    High-throughput sequencing is a powerful tool, but suffers biases and errors that must be accounted for to prevent false biological conclusions. Such errors include batch effects; technical errors only present in subsets of data due to procedural changes within a study. If overlooked and multiple batches of data are combined, spurious biological signals can arise, particularly if batches of data are correlated with biological variables. Batch effects can be minimized through randomization of sample groups across batches. However, in long-term or multiyear studies where data are added incrementally, full randomization is impossible, and batch effects may be a common feature. Here, we present a case study where false signals of selection were detected due to a batch effect in a multiyear study of Alpine ibex (Capra ibex). The batch effect arose because sequencing read length changed over the course of the project and populations were added incrementally to the study, resulting in nonrandom distributions of populations across read lengths. The differences in read length caused small misalignments in a subset of the data, leading to false variant alleles and thus false SNPs. Pronounced allele frequency differences between populations arose at these SNPs because of the correlation between read length and population. This created highly statistically significant, but biologically spurious, signals of selection and false associations between allele frequencies and the environment. We highlight the risk of batch effects and discuss strategies to reduce the impacts of batch effects in multiyear high-throughput sequencing studies

    Monocyte biology conserved across species: Functional insights from cattle

    Get PDF
    Similar to human monocytes, bovine monocytes can be split into CD14highCD16- classical, CD14highCD16high intermediate and CD14-/dimCD16high nonclassical monocytes (cM, intM, and ncM, respectively). Here, we present an in-depth analysis of their steady-state bulk- and single-cell transcriptomes, highlighting both pronounced functional specializations and transcriptomic relatedness. Bulk gene transcription indicates pro-inflammatory and antibacterial roles of cM, while ncM and intM appear to be specialized in regulatory/anti-inflammatory functions and tissue repair, as well as antiviral responses and T-cell immunomodulation. Notably, intM stood out by high expression of several genes associated with antigen presentation. Anti-inflammatory and antiviral functions of ncM are further supported by dominant oxidative phosphorylation and selective strong responses to TLR7/8 ligands, respectively. Moreover, single-cell RNA-seq revealed previously unappreciated heterogeneity within cM and proposes intM as a transient differentiation intermediate between cM and ncM

    Claw and limb disorders in 12 Norwegian beef-cow herds

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The main aim of the study was to assess the prevalence of claw and limb disorders in Norwegian beef-cow herds.</p> <p>Methods</p> <p>Twenty-six herds with ≥15 cow-years were selected by computerized systematic assignment from the three most beef cattle-dense regions of Norway. The study population consisted of 12 herds with 28 heifers and 334 cows. The animals were trimmed and examined once by claw trimmers during the late winter and spring of 2003. The seven claw trimmers had been taught diagnosing and recording of claw lesions. Environment, feeding and management routines, age and breed, culling and carcass characteristics were also recorded.</p> <p>Results</p> <p>Lameness was recorded in 1.1% of the animals, and only in hind claws. Pericarpal swellings were recorded in one animal and peritarsal lesions in none. In total, claw and limb disorders including lameness were recorded in 29.6% of the animals, 4.1% with front and 28.2% with hind limb disorders, respectively. Most lesions were mild. Laminitis-related claw lesions were recorded in 18.0% of the animals and infectious lesions in 16.6%. The average claw length was 84 mm in front claws and 89 mm in hind claw. Both laminitis-related and infectious claw lesions were more prevalent with increasing age. Carcasses from animals with claw and limb disorders were on average 34 kg heavier than carcasses from animals without such disorders (p = 0.02). Our results also indicate association between some management factors and claw lesions.</p> <p>Conclusion</p> <p>The study shows that the prevalence of lameness was low in 12 Norwegian beef-cow herds compared to beef-cattle herds in other countries and also that there were less claw and limb disorders in these herds compared to foreign dairy-cattle herds. The prevalence of lameness and white-line fissures was approximately the same as in Norwegian dairy herds whereas less dermatitis, heel-horn erosions, haemorrhages of the sole and the white line and sole ulcers were recorded.</p

    Rapid niche expansion by selection on functional genomic variation after ecosystem recovery

    Get PDF
    It is well recognized that environmental degradation caused by human activities can result in dramatic losses of species and diversity. However, comparatively little is known about the ability of biodiversity to re-emerge following ecosystem recovery. Here, we show that a European whitefish subspecies, the gangfisch Coregonus lavaretus macrophthalmus, rapidly increased its ecologically functional diversity following the restoration of Lake Constance after anthropogenic eutrophication. In fewer than ten generations, gangfisch evolved a greater range of gill raker numbers (GRNs) to utilize a broader ecological niche. A sparse genetic architecture underlies this variation in GRN. Several co-expressed gene modules and genes showing signals of positive selection were associated with GRN and body shape. These were enriched for biological pathways related to trophic niche expansion in fishes. Our findings demonstrate the potential of functional diversity to expand following habitat restoration, given a fortuitous combination of genetic architecture, genetic diversity and selection

    Climatic and topographic changes since the Miocene influenced the diversification and biogeography of the tent tortoise (Psammobates tentorius) species complex in Southern Africa

    Get PDF
    Background: Climatic and topographic changes function as key drivers in shaping genetic structure and cladogenic radiation in many organisms. Southern Africa has an exceptionally diverse tortoise fauna, harbouring one-third of the world’s tortoise genera. The distribution of Psammobates tentorius (Kuhl, 1820) covers two of the 25 biodiversity hotspots in the world, the Succulent Karoo and Cape Floristic Region. The highly diverged P. tentorius represents an excellent model species for exploring biogeographic and radiation patterns of reptiles in Southern Africa. Results: We investigated genetic structure and radiation patterns against temporal and spatial dimensions since the Miocene in the Psammobates tentorius species complex, using multiple types of DNA markers and niche modelling analyses. Cladogenesis in P. tentorius started in the late Miocene (11.63–5.33 Ma) when populations dispersed from north to south to form two geographically isolated groups. The northern group diverged into a clade north of the Orange River (OR), followed by the splitting of the group south of the OR into a western and an interior clade. The latter divergence corresponded to the intensifcation of the cold Benguela current, which caused western aridifcation and rainfall seasonality. In the south, tectonic uplift and subsequent exhumation, together with climatic fuctuations seemed responsible for radiations among the four southern clades since the late Miocene. We found that each clade occurred in a habitat shaped by diferent climatic parameters, and that the niches difered substantially among the clades of the northern group but were similar among clades of the southern group. Conclusion: Climatic shifts, and biome and geographic changes were possibly the three major driving forces shaping cladogenesis and genetic structure in Southern African tortoise species. Our results revealed that the cladogenesis of the P. tentorius species complex was probably shaped by environmental cooling, biome shifts and topographic uplift in Southern Africa since the late Miocene. The Last Glacial Maximum (LGM) may have impacted the distribution of P. tentorius substantially. We found the taxonomic diversify of the P. tentorius species complex to be highest in the Greater Cape Floristic Region. All seven clades discovered warrant conservation attention, particularly Ptt-B–Ptr, Ptt-A and Pv-
    corecore