7 research outputs found

    Statin use is not associated with improved progression free survival in cetuximab treated KRAS mutant metastatic colorectal cancer patients: results from the CAIRO2 study.

    No full text
    Statins may inhibit the expression of the mutant KRAS phenotype by preventing the prenylation and thus the activation of the KRAS protein. This study was aimed at retrospectively evaluating the effect of statin use on outcome in KRAS mutant metastatic colorectal cancer patients (mCRC) treated with cetuximab. Treatment data were obtained from patients who were treated with capecitabine, oxaliplatin bevacizumab ± cetuximab in the phase III CAIRO2 study. A total of 529 patients were included in this study, of whom 78 patients were on statin therapy. In patients with a KRAS wild type tumor (n = 321) the median PFS was 10.3 vs. 11.4 months for non-users compared to statin users and in patients with a KRAS mutant tumor (n = 208) this was 7.6 vs. 6.2 months, respectively. The hazard ratio (HR) for PFS for statin users was 1.12 (95% confidence interval 0.78-1.61) and was not influenced by treatment arm, KRAS mutation status or the KRAS*statin interaction. Statin use adjusted for covariates was not associated with increased PFS (HR = 1.01, 95% confidence interval 0.71-1.54). In patients with a KRAS wild type tumor the median OS for non-users compared to statin users was 22.4 vs. 19.8 months and in the KRAS mutant tumor group the OS was 18.1 vs. 14.5 months. OS was significantly shorter in statin users versus non-users (HR = 1.54; 95% confidence interval 1.06-2.22). However, statin use, adjusted for covariates was not associated with increased OS (HR = 1.41, 95% confidence interval 0.95-2.10). In conclusion, the use of statins at time of diagnosis was not associated with an improved PFS in KRAS mutant mCRC patients treated with chemotherapy and bevacizumab plus cetuximab

    Kaplan-Meier plots for progression free survival for patients with KRAS wild type (19 statin-users and 145 nonusers) and KRAS mutant (16 statin-users and 83 nonusers) tumors treated with capecitabine, oxaliplatin, bevacizumab and cetuximab.

    No full text
    <p>Kaplan-Meier plots for progression free survival for patients with KRAS wild type (19 statin-users and 145 nonusers) and KRAS mutant (16 statin-users and 83 nonusers) tumors treated with capecitabine, oxaliplatin, bevacizumab and cetuximab.</p

    Overview of the mevalonate pathway and the inhibition of HMG-CoA by statins.

    No full text
    <p><i>Mevalonate pathway causes prenylation of ras, N-glycosylation of EGFR and membrane and steroidsynthesis. Statins have inhibitory effects on the mevalonate pathway and thus on prenylation of k-ras. Abbreviations: Acetyl-CoA, Acetyl coenzyme A; EGFR, epidermal growth factor receptor; FTase, farnesyltransferase; GTase, geranylgeranyltransferase; HMG-CoA (reductase), 3-hydroxy-3-methyl-glutaryl-CoA reductase; -PP, -pyrophosphate.</i></p

    Longitudinal immune monitoring of patients with resectable esophageal adenocarcinoma treated with Neoadjuvant PD-L1 checkpoint inhibition

    No full text
    ABSTRACTThe analysis of peripheral blood mononuclear cells (PBMCs) by flow cytometry holds promise as a platform for immune checkpoint inhibition (ICI) biomarker identification. Our aim was to characterize the systemic immune compartment in resectable esophageal adenocarcinoma patients treated with neoadjuvant ICI therapy. In total, 24 patients treated with neoadjuvant chemoradiotherapy (nCRT) and anti-PD-L1 (atezolizumab) from the PERFECT study (NCT03087864) were included and 26 patients from a previously published nCRT cohort. Blood samples were collected at baseline, on-treatment, before and after surgery. Response groups for comparison were defined as pathological complete responders (pCR) or patients with pathological residual disease (non-pCR). Based on multicolor flow cytometry of PBMCs, an immunosuppressive phenotype was observed in the non-pCR group of the PERFECT cohort, characterized by a higher percentage of regulatory T cells (Tregs), intermediate monocytes, and a lower percentage of type-2 conventional dendritic cells. A further increase in activated Tregs was observed in non-pCR patients on-treatment. These findings were not associated with a poor response in the nCRT cohort. At baseline, immunosuppressive cytokines were elevated in the non-pCR group of the PERFECT study. The suppressive subsets correlated at baseline with a Wnt/β-Catenin gene expression signature and on-treatment with epithelial–mesenchymal transition and angiogenesis signatures from tumor biopsies. After surgery monocyte activation (CD40), low CD8+Ki67+ T cell rates, and the enrichment of CD206+ monocytes were related to early recurrence. These findings highlight systemic barriers to effective ICI and the need for optimized treatment regimens

    Statin Use Is Not Associated with Improved Progression Free Survival in Cetuximab Treated KRAS Mutant Metastatic Colorectal Cancer Patients: Results from the CAIRO2 Study

    No full text
    Statins may inhibit the expression of the mutant KRAS phenotype by preventing the prenylation and thus the activation of the KRAS protein. This study was aimed at retrospectively evaluating the effect of statin use on outcome in KRAS mutant metastatic colorectal cancer patients (mCRC) treated with cetuximab. Treatment data were obtained from patients who were treated with capecitabine, oxaliplatin bevacizumab ± cetuximab in the phase III CAIRO2 study. A total of 529 patients were included in this study, of whom 78 patients were on statin therapy. In patients with a KRAS wild type tumor (n = 321) the median PFS was 10.3 vs. 11.4 months for non-users compared to statin users and in patients with a KRAS mutant tumor (n = 208) this was 7.6 vs. 6.2 months, respectively. The hazard ratio (HR) for PFS for statin users was 1.12 (95% confidence interval 0.78-1.61) and was not influenced by treatment arm, KRAS mutation status or the KRAS*statin interaction. Statin use adjusted for covariates was not associated with increased PFS (HR = 1.01, 95% confidence interval 0.71-1.54). In patients with a KRAS wild type tumor the median OS for non-users compared to statin users was 22.4 vs. 19.8 months and in the KRAS mutant tumor group the OS was 18.1 vs. 14.5 months. OS was significantly shorter in statin users versus non-users (HR = 1.54; 95% confidence interval 1.06-2.22). However, statin use, adjusted for covariates was not associated with increased OS (HR = 1.41, 95% confidence interval 0.95-2.10). In conclusion, the use of statins at time of diagnosis was not associated with an improved PFS in KRAS mutant mCRC patients treated with chemotherapy and bevacizumab plus cetuximab

    A 12-gene pharmacogenetic panel to prevent adverse drug reactions: an open-label, multicentre, controlled, cluster-randomised crossover implementation study

    No full text
    © 2023Background: The benefit of pharmacogenetic testing before starting drug therapy has been well documented for several single gene–drug combinations. However, the clinical utility of a pre-emptive genotyping strategy using a pharmacogenetic panel has not been rigorously assessed. Methods: We conducted an open-label, multicentre, controlled, cluster-randomised, crossover implementation study of a 12-gene pharmacogenetic panel in 18 hospitals, nine community health centres, and 28 community pharmacies in seven European countries (Austria, Greece, Italy, the Netherlands, Slovenia, Spain, and the UK). Patients aged 18 years or older receiving a first prescription for a drug clinically recommended in the guidelines of the Dutch Pharmacogenetics Working Group (ie, the index drug) as part of routine care were eligible for inclusion. Exclusion criteria included previous genetic testing for a gene relevant to the index drug, a planned duration of treatment of less than 7 consecutive days, and severe renal or liver insufficiency. All patients gave written informed consent before taking part in the study. Participants were genotyped for 50 germline variants in 12 genes, and those with an actionable variant (ie, a drug–gene interaction test result for which the Dutch Pharmacogenetics Working Group [DPWG] recommended a change to standard-of-care drug treatment) were treated according to DPWG recommendations. Patients in the control group received standard treatment. To prepare clinicians for pre-emptive pharmacogenetic testing, local teams were educated during a site-initiation visit and online educational material was made available. The primary outcome was the occurrence of clinically relevant adverse drug reactions within the 12-week follow-up period. Analyses were irrespective of patient adherence to the DPWG guidelines. The primary analysis was done using a gatekeeping analysis, in which outcomes in people with an actionable drug–gene interaction in the study group versus the control group were compared, and only if the difference was statistically significant was an analysis done that included all of the patients in the study. Outcomes were compared between the study and control groups, both for patients with an actionable drug–gene interaction test result (ie, a result for which the DPWG recommended a change to standard-of-care drug treatment) and for all patients who received at least one dose of index drug. The safety analysis included all participants who received at least one dose of a study drug. This study is registered with ClinicalTrials.gov, NCT03093818 and is closed to new participants. Findings: Between March 7, 2017, and June 30, 2020, 41 696 patients were assessed for eligibility and 6944 (51·4 % female, 48·6% male; 97·7% self-reported European, Mediterranean, or Middle Eastern ethnicity) were enrolled and assigned to receive genotype-guided drug treatment (n=3342) or standard care (n=3602). 99 patients (52 [1·6%] of the study group and 47 [1·3%] of the control group) withdrew consent after group assignment. 652 participants (367 [11·0%] in the study group and 285 [7·9%] in the control group) were lost to follow-up. In patients with an actionable test result for the index drug (n=1558), a clinically relevant adverse drug reaction occurred in 152 (21·0%) of 725 patients in the study group and 231 (27·7%) of 833 patients in the control group (odds ratio [OR] 0·70 [95% CI 0·54–0·91]; p=0·0075), whereas for all patients, the incidence was 628 (21·5%) of 2923 patients in the study group and 934 (28·6%) of 3270 patients in the control group (OR 0·70 [95% CI 0·61–0·79]; p <0·0001). Interpretation: Genotype-guided treatment using a 12-gene pharmacogenetic panel significantly reduced the incidence of clinically relevant adverse drug reactions and was feasible across diverse European health-care system organisations and settings. Large-scale implementation could help to make drug therapy increasingly safe. Funding: European Union Horizon 2020
    corecore