20 research outputs found

    Regulation of two motor patterns enables the gradual adjustment of locomotion strategy in Caenorhabditis elegans

    Get PDF
    In animal locomotion a tradeoff exists between stereotypy and flexibility: fast long-distance travelling (LDT) requires coherent regular motions, while local sampling and area-restricted search (ARS) rely on flexible movements. We report here on a posture control system in C. elegans that coordinates these needs. Using quantitative posture analysis we explain worm locomotion as a composite of two modes: regular undulations versus flexible turning. Graded reciprocal regulation of both modes allows animals to flexibly adapt their locomotion strategy under sensory stimulation along a spectrum ranging from LDT to ARS. Using genetics and functional imaging of neural activity we characterize the counteracting interneurons AVK and DVA that utilize FLP-1 and NLP-12 neuropeptides to control both motor modes. Gradual regulation of behaviors via this system is required for spatial navigation during chemotaxis. This work shows how a nervous system controls simple elementary features of posture to generate complex movements for goal-directed locomotion strategies

    Trans-cellular control of synapse properties by a cell type-specific splicing regulator

    Get PDF
    The recognition of synaptic partners and specification of synaptic properties are fundamental for the function of neuronal circuits. ‘Terminal selector’ transcription factors coordinate the expression of terminal gene batteries that specify cell type-specific properties. Moreover, pan-neuronal alternative splicing regulators have been implicated in directing neuronal differentiation. However, the cellular logic of how splicing regulators instruct specific synaptic properties remains poorly understood. Here, we combine genome-wide mapping of mRNA targets and cell type-specific loss-of-function studies to uncover the contribution of the nuclear RNA binding protein SLM2 to hippocampal synapse specification. Focusing on hippocampal pyramidal cells and SST-positive GABAergic interneurons, we find that SLM2 preferentially binds and regulates alternative splicing of transcripts encoding synaptic proteins, thereby generating cell type-specific isoforms. In the absence of SLM2, cell type-specification, differentiation, and viability are unaltered and neuronal populations exhibit normal intrinsic properties. By contrast, cell type-specific loss of SLM2 results in highly selective, non-cell autonomous synaptic phenotypes, altered synaptic transmission, and associated defects in a hippocampus-dependent memory task. Thus, alternative splicing provides a critical layer of gene regulation that instructs specification of neuronal connectivity in a trans-synaptic manner

    A cell-type-specific alternative splicing regulator shapes synapse properties in a trans-synaptic manner

    Get PDF
    The specification of synaptic properties is fundamental for the function of neuronal circuits. "Terminal selector" transcription factors coordinate terminal gene batteries that specify cell-type-specific properties. Moreover, pan-neuronal splicing regulators have been implicated in directing neuronal differentiation. However, the cellular logic of how splicing regulators instruct specific synaptic properties remains poorly understood. Here, we combine genome-wide mapping of mRNA targets and cell-type-specific loss-of-function studies to uncover the contribution of the RNA-binding protein SLM2 to hippocampal synapse specification. Focusing on pyramidal cells and somatostatin (SST)-positive GABAergic interneurons, we find that SLM2 preferentially binds and regulates alternative splicing of transcripts encoding synaptic proteins. In the absence of SLM2, neuronal populations exhibit normal intrinsic properties, but there are non-cell-autonomous synaptic phenotypes and associated defects in a hippocampus-dependent memory task. Thus, alternative splicing provides a critical layer of gene regulation that instructs specification of neuronal connectivity in a trans-synaptic manner

    Optimizing Nervous System-Specific Gene Targeting with Cre Driver Lines: Prevalence of Germline Recombination and Influencing Factors.

    Get PDF
    The Cre-loxP system is invaluable for spatial and temporal control of gene knockout, knockin, and reporter expression in the mouse nervous system. However, we report varying probabilities of unexpected germline recombination in distinct Cre driver lines designed for nervous system-specific recombination. Selective maternal or paternal germline recombination is showcased with sample Cre lines. Collated data reveal germline recombination in over half of 64 commonly used Cre driver lines, in most cases with a parental sex bias related to Cre expression in sperm or oocytes. Slight differences among Cre driver lines utilizing common transcriptional control elements affect germline recombination rates. Specific target loci demonstrated differential recombination; thus, reporters are not reliable proxies for another locus of interest. Similar principles apply to other recombinase systems and other genetically targeted organisms. We hereby draw attention to the prevalence of germline recombination and provide guidelines to inform future research for the neuroscience and broader molecular genetics communities

    Alternative splice codes for neuronal diversification and synapse specification

    No full text
    Mammalian nervous systems exhibit an immense structural and functional complexity ranging from billions of neurons to their precise synaptic communication. Neuronal circuits consist of hierarchical assemblies of highly specialized neuronal cell types. Their intrinsic properties and the functional specification of their synapses are fundamental for how circuits process information. However, how diverse classes of neurons establish their cellular and synaptic specificity remains largely unclear. In this thesis, I explored whether cell type-specific alternative splicing programs contribute to the regulation of neuronal and synaptic properties, thereby shaping neuronal connectivity and circuit function. To investigate whether alternative splicing programs play cell type-specific roles in the mouse brain, I performed global assessments of alternative splicing regulation across neuronal cell classes as well as targeted loss of function studies for one specific alternative splicing regulator. I focused on the RNA binding protein SLM2 which exhibits a remarkable neuronal cell class-specific expression in the mouse brain and had been previously implicated in the regulation of alternative splicing of the synaptic adhesion molecules Neurexin1,2, and 3 (Ehrmann et al., 2013; Iijima et al., 2011). Surprisingly, we found that SLM2 regulates only a handful of transcripts and that loss of SLM2 results in highly selective alterations at glutamatergic synapses in the mouse hippocampus. Genetic correction of the SLM2-dependent target exon of Neurexin 1 was sufficient to rescue synaptic deficits and alterations in the behavior of the Slm2 knock-out animals. Thus, the SLM2 alternative splicing program is highly dedicated to control synapse specification and function in the hippocampus. In a complementary effort, I investigated how alternative splicing programs are arrayed across different neuronal populations of the forebrain. Systematic mapping of ribosome-associated transcript isoforms in genetically defined cell populations of wild-type animals uncovered extensive transcript isoform diversity across neuronal classes. This revealed that the important drivers for diversification in glutamatergic and GABAergic cells are alternative splicing and transcription start sites. Importantly, we uncovered that such cell class-specific alternative splicing programs mainly target genes implicated in regulating synaptic functions and the intrinsic properties of neurons. Finally, I explored whether a single RNA binding protein controls common or divergent splicing events and cellular functions in different neuronal populations. We analyzed SLM2-dependent alternative splicing programs in two hippocampal glutamatergic cell classes and somatostatin positive GABAergic neurons. Our findings indicate that there are unique sets of SLM2-dependent transcript isoforms and divergent synaptic phenotypes in different cell populations. In sum, this work uncovers major roles for cell class-specific alternative splicing programs in the genetic determination of neuronal function and synapse specificatio

    Neurexins: molecular codes for shaping neuronal synapses

    No full text
    The function of neuronal circuits relies on the properties of individual neuronal cells and their synapses. We propose that a substantial degree of synapse formation and function is instructed by molecular codes resulting from transcriptional programmes. Recent studies on the Neurexin protein family and its ligands provide fundamental insight into how synapses are assembled and remodelled, how synaptic properties are specified and how single gene mutations associated with neurodevelopmental and psychiatric disorders might modify the operation of neuronal circuits and behaviour. In this Review, we first summarize insights into Neurexin function obtained from various model organisms. We then discuss the mechanisms and logic of the cell type-specific regulation of Neurexin isoforms, in particular at the level of alternative mRNA splicing. Finally, we propose a conceptual framework for how combinations of synaptic protein isoforms act as 'senders' and 'readers' to instruct synapse formation and the acquisition of cell type-specific and synapse-specific functional properties

    Landscape of ribosome-engaged transcript isoforms reveals extensive neuronal-cell-class-specific alternative splicing programs

    No full text
    Nervous system function relies on complex assemblies of distinct neuronal cell types that have unique anatomical and functional properties instructed by molecular programs. Alternative splicing is a key mechanism for the expansion of molecular repertoires, and protein splice isoforms shape neuronal cell surface recognition and function. However, the logic of how alternative splicing programs are arrayed across neuronal cells types is poorly understood. We systematically mapped ribosome-associated transcript isoforms in genetically defined neuron types of the mouse forebrain. Our dataset provides an extensive resource of transcript diversity across major neuron classes. We find that neuronal transcript isoform profiles reliably distinguish even closely related classes of pyramidal cells and inhibitory interneurons in the mouse hippocampus and neocortex. These highly specific alternative splicing programs selectively control synaptic proteins and intrinsic neuronal properties. Thus, transcript diversification via alternative splicing is a central mechanism for the functional specification of neuronal cell types and circuits

    Control of neuronal synapse specification by a highly dedicated alternative splicing program

    No full text
    Alternative RNA splicing represents a central mechanism for expanding the coding power of genomes. Individual RNA-binding proteins can control alternative splicing choices in hundreds of RNA transcripts, thereby tuning amounts and functions of large numbers of cellular proteins. We found that the RNA-binding protein SLM2 is essential for functional specification of glutamatergic synapses in the mouse hippocampus. Genome-wide mapping revealed a markedly selective SLM2-dependent splicing program primarily consisting of only a few target messenger RNAs that encode synaptic proteins. Genetic correction of a single SLM2-dependent target exon in the synaptic recognition molecule neurexin-1 was sufficient to rescue synaptic plasticity and behavioral defects in Slm2 knockout mice. These findings uncover a highly selective alternative splicing program that specifies synaptic properties in the central nervous system
    corecore