857 research outputs found
Radial Turbine Preliminary Aerodynamic Design Optimization for Expander Cycle Liquid Rocket Engine
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/77123/1/AIAA-2006-5046-301.pd
Unification and the Hierarchy from AdS5
In AdS5, the coupling for bulk gauge bosons runs logarithmically, not as a
power law. For this reason, one can preserve perturbative unification of
couplings. Depending on the cutoff, this can occur at a high scale. We discuss
subtleties in the calculation and present a regularization scheme motivated by
the holographic correspondence. We find that generically, as in the standard
model, the couplings almost unify. For specific choices of the cutoff and
number of scalar multiplets, there is good agreement between the measured
couplings and the assumption of high scale unification.Comment: 5 pages, 2 figure
SIMPATIQCO: A server-based software suite which facilitates monitoring the time course of LC-MS performance metrics on orbitrap instruments
While the performance of liquid chromatography (LC) and mass spectrometry (MS) instrumentation continues to increase, applications such as analyses of complete or near-complete proteomes and quantitative studies require constant and optimal system performance. For this reason, research laboratories and core facilities alike are recommended to implement quality control (QC) measures as part of their routine workflows. Many laboratories perform sporadic quality control checks. However, successive and systematic longitudinal monitoring of system performance would be facilitated by dedicated automatic or semiautomatic software solutions that aid an effortless analysis and display of QC metrics over time. We present the software package SIMPATIQCO (SIMPle AuTomatIc Quality COntrol) designed for evaluation of data from LTQ Orbitrap, Q-Exactive, LTQ FT, and LTQ instruments. A centralized SIMPATIQCO server can process QC data from multiple instruments. The software calculates QC metrics supervising every step of data acquisition from LC and electrospray to MS. For each QC metric the software learns the range indicating adequate system performance from the uploaded data using robust statistics. Results are stored in a database and can be displayed in a comfortable manner from any computer in the laboratory via a web browser. QC data can be monitored for individual LC runs as well as plotted over time. SIMPATIQCO thus assists the longitudinal monitoring of important QC metrics such as peptide elution times, peak widths, intensities, total ion current (TIC) as well as sensitivity, and overall LC-MS system performance; in this way the software also helps identify potential problems. The SIMPATIQCO software package is available free of charge
Fragment Formation in Central Heavy Ion Collisions at Relativistic Energies
We perform a systematic study of the fragmentation path of excited nuclear
matter in central heavy ion collisions at the intermediate energy of . The theoretical calculations are based on a Relativistic
Boltzmann-Uehling-Uhlenbeck () transport equation including stochastic
effects. A Relativistic Mean Field () approach is used, based on a
non-linear Lagrangian, with coupling constants tuned to reproduce the high
density results of calculations with correlations.
At variance with the case at Fermi energies, a new fast clusterization
mechanism is revealed in the early compression stage of the reaction dynamics.
Fragments appear directly produced from phase-space fluctuations due to
two-body correlations. In-medium effects of the elastic nucleon-nucleon cross
sections on the fragmentation dynamics are particularly discussed. The
subsequent evolution of the primordial clusters is treated using a simple
phenomenological phase space coalescence algorithm.
The reliability of the approach, formation and recognition, is investigated
in detail by comparing fragment momentum space distributions {\it and
simultaneously} their yields with recent experimental data of the
collaboration by varying the system size of the colliding system, i.e. its
compressional energy (pressure, radial flow). We find an excellent agreement
between theory and experiment in almost all the cases and, on the other hand,
some limitations of the simple coalescence model. Furthermore, the temporal
evolution of the fragment structure is explored with a clear evidence of an
earlier formation of the heavier clusters, that will appear as interesting
of the high density phase of the nuclear Equation of State ().Comment: 21 pages, 8 figures, Latex Elsart Style, minor corrections in p.7,
two refs. added, Nucl.Phys.A, accepte
Charming CP Violation and Dipole Operators from RS Flavor Anarchy
Recently the LHCb collaboration reported evidence for direct CP violation in
charm decays. The value is sufficiently large that either substantially
enhanced Standard Model contributions or non-Standard Model physics is required
to explain it. In the latter case only a limited number of possibilities would
be consistent with other existing flavor-changing constraints. We show that
warped extra dimensional models that explain the quark spectrum through flavor
anarchy can naturally give rise to contributions of the size required to
explain the the LHCb result. The D meson asymmetry arises through a sizable
CP-violating contribution to a chromomagnetic dipole operator. This happens
naturally without introducing inconsistencies with existing constraints in the
up quark sector. We discuss some subtleties in the loop calculation that are
similar to those in Higgs to \gamma\gamma. Loop-induced dipole operators in
warped scenarios and their composite analogs exhibit non-trivial dependence on
the Higgs profile, with the contributions monotonically decreasing when the
Higgs is pushed away from the IR brane. We show that the size of the dipole
operator quickly saturates as the Higgs profile approaches the IR brane,
implying small dependence on the precise details of the Higgs profile when it
is quasi IR localized. We also explain why the calculation of the coefficient
of the lowest dimension 5D operator is guaranteed to be finite. This is true
not only in the charm sector but also with other radiative processes such as
electric dipole moments, b to s\gamma, \epsilon'/\epsilon_K and \mu\ to
e\gamma. We furthermore discuss the interpretation of this contribution within
the framework of partial compositeness in four dimensions and highlight some
qualitative differences between the generic result of composite models and that
obtained for dynamics that reproduces the warped scenario.Comment: 14 page
Clinicopathological evaluation of chronic traumatic encephalopathy in players of American football
IMPORTANCE: Players of American football may be at increased risk of long-term neurological conditions, particularly chronic traumatic encephalopathy (CTE).
OBJECTIVE: To determine the neuropathological and clinical features of deceased football players with CTE.
DESIGN, SETTING, AND PARTICIPANTS: Case series of 202 football players whose brains were donated for research. Neuropathological evaluations and retrospective telephone clinical assessments (including head trauma history) with informants were performed blinded. Online questionnaires ascertained athletic and military history.
EXPOSURES: Participation in American football at any level of play.
MAIN OUTCOMES AND MEASURES: Neuropathological diagnoses of neurodegenerative diseases, including CTE, based on defined diagnostic criteria; CTE neuropathological severity (stages I to IV or dichotomized into mild [stages I and II] and severe [stages III and IV]); informant-reported athletic history and, for players who died in 2014 or later, clinical presentation, including behavior, mood, and cognitive symptoms and dementia.
RESULTS: Among 202 deceased former football players (median age at death, 66 years [interquartile range, 47-76 years]), CTE was neuropathologically diagnosed in 177 players (87%; median age at death, 67 years [interquartile range, 52-77 years]; mean years of football participation, 15.1 [SD, 5.2]), including 0 of 2 pre–high school, 3 of 14 high school (21%), 48 of 53 college (91%), 9 of 14 semiprofessional (64%), 7 of 8 Canadian Football League (88%), and 110 of 111 National Football League (99%) players. Neuropathological severity of CTE was distributed across the highest level of play, with all 3 former high school players having mild pathology and the majority of former college (27 [56%]), semiprofessional (5 [56%]), and professional (101 [86%]) players having severe pathology. Among 27 participants with mild CTE pathology, 26 (96%) had behavioral or mood symptoms or both, 23 (85%) had cognitive symptoms, and 9 (33%) had signs of dementia. Among 84 participants with severe CTE pathology, 75 (89%) had behavioral or mood symptoms or both, 80 (95%) had cognitive symptoms, and 71 (85%) had signs of dementia.
CONCLUSIONS AND RELEVANCE: In a convenience sample of deceased football players who donated their brains for research, a high proportion had neuropathological evidence of CTE, suggesting that CTE may be related to prior participation in football.This study received support from NINDS (grants U01 NS086659, R01 NS078337, R56 NS078337, U01 NS093334, and F32 NS096803), the National Institute on Aging (grants K23 AG046377, P30AG13846 and supplement 0572063345-5, R01 AG1649), the US Department of Defense (grant W81XWH-13-2-0064), the US Department of Veterans Affairs (I01 CX001038), the Veterans Affairs Biorepository (CSP 501), the Veterans Affairs Rehabilitation Research and Development Traumatic Brain Injury Center of Excellence (grant B6796-C), the Department of Defense Peer Reviewed Alzheimer’s Research Program (grant 13267017), the National Operating Committee on Standards for Athletic Equipment, the Alzheimer’s Association (grants NIRG-15-362697 and NIRG-305779), the Concussion Legacy Foundation, the Andlinger Family Foundation, the WWE, and the NFL
Liquid biopsy: an examination of platelet RNA obtained from head and neck squamous cell carcinoma patients for predictive molecular tumor markers
Aim: Recently, a tumor cell-platelet interaction was identified in different tumor entities, resulting in a transfer of tumor-derived RNA into platelets, named further “tumor-educated platelets (TEP)”. The present pilot study aims to investigate whether such a tumor-platelet transfer of RNA occurs also in patients suffering from head and neck squamous cell carcinoma (HNSCC). Methods: Sequencing analysis of RNA derived from platelets of tumor patients (TPs) and healthy donors (HDs) were performed. Subsequently, quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used for verification of differentially expressed genes in platelets from TPs and HDs in a second cohort of patients and HDs. Data were analyzed by applying bioinformatic tools. Results: Sequencing of RNA derived from the tumor as well as from platelets of TPs and HDs revealed 426 significantly differentially existing RNA, at which 406 RNA were more and 20 RNA less abundant in platelets from TPs in comparison to that of HDs. In TPs’ platelets, abundantly existing RNA coding for 49 genes were detected, characteristically expressed in epithelial cells and RNA, the products of which are involved in tumor progression. Applying bioinformatic tools and verification on a second TP/HD cohort, collagen type I alpha 1 chain (COL1A1) and zinc finger protein 750 (ZNF750) were identified as the strongest potentially platelet-RNA-sequencing (RNA-seq)-based biomarkers for HNSCC. Conclusions: These results indicate a transfer of tumor-derived messenger RNA (mRNA) into platelets of HNSCC patients. Therefore, analyses of a patient’s platelet RNA could be an efficient option for liquid biopsy in order to diagnose HNSCC or to monitor tumorigenesis as well as therapeutic responses at any time and in real time
Differential limit on the extremely-high-energy cosmic neutrino flux in the presence of astrophysical background from nine years of IceCube data
We report a quasi-differential upper limit on the extremely-high-energy (EHE)
neutrino flux above GeV based on an analysis of nine years of
IceCube data. The astrophysical neutrino flux measured by IceCube extends to
PeV energies, and it is a background flux when searching for an independent
signal flux at higher energies, such as the cosmogenic neutrino signal. We have
developed a new method to place robust limits on the EHE neutrino flux in the
presence of an astrophysical background, whose spectrum has yet to be
understood with high precision at PeV energies. A distinct event with a
deposited energy above GeV was found in the new two-year sample, in
addition to the one event previously found in the seven-year EHE neutrino
search. These two events represent a neutrino flux that is incompatible with
predictions for a cosmogenic neutrino flux and are considered to be an
astrophysical background in the current study. The obtained limit is the most
stringent to date in the energy range between and GeV. This result constrains neutrino models predicting a three-flavor
neutrino flux of $E_\nu^2\phi_{\nu_e+\nu_\mu+\nu_\tau}\simeq2\times 10^{-8}\
{\rm GeV}/{\rm cm}^2\ \sec\ {\rm sr}10^9\ {\rm GeV}$. A significant part
of the parameter-space for EHE neutrino production scenarios assuming a
proton-dominated composition of ultra-high-energy cosmic rays is excluded.Comment: The version accepted for publication in Physical Review
Asteroseismology with the Roman Galactic Bulge Time-Domain Survey
Asteroseismology has transformed stellar astrophysics. Red giant
asteroseismology is a prime example, with oscillation periods and amplitudes
that are readily detectable with time-domain space-based telescopes. These
oscillations can be used to infer masses, ages and radii for large numbers of
stars, providing unique constraints on stellar populations in our galaxy. The
cadence, duration, and spatial resolution of the Roman galactic bulge
time-domain survey (GBTDS) are well-suited for asteroseismology and will probe
an important population not studied by prior missions. We identify photometric
precision as a key requirement for realizing the potential of asteroseismology
with Roman. A precision of 1 mmag per 15-min cadence or better for saturated
stars will enable detections of the populous red clump star population in the
Galactic bulge. If the survey efficiency is better than expected, we argue for
repeat observations of the same fields to improve photometric precision, or
covering additional fields to expand the stellar population reach if the
photometric precision for saturated stars is better than 1 mmag.
Asteroseismology is relatively insensitive to the timing of the observations
during the mission, and the prime red clump targets can be observed in a single
70 day campaign in any given field. Complementary stellar characterization,
particularly astrometry tied to the Gaia system, will also dramatically expand
the diagnostic power of asteroseismology. We also highlight synergies to Roman
GBTDS exoplanet science using transits and microlensing.Comment: Roman Core Community Survey White Paper, 3 pages, 4 figure
Asteroseismology with the Roman Galactic Bulge Time-Domain Survey
Asteroseismology has transformed stellar astrophysics. Red giant asteroseismology is a prime example, with oscillation periods and amplitudes that are readily detectable with time-domain space-based telescopes. These oscillations can be used to infer masses, ages and radii for large numbers of stars, providing unique constraints on stellar populations in our galaxy. The cadence, duration, and spatial resolution of the Roman galactic bulge time-domain survey (GBTDS) are well-suited for asteroseismology and will probe an important population not studied by prior missions. We identify photometric precision as a key requirement for realizing the potential of asteroseismology with Roman. A precision of 1 mmag per 15-min cadence or better for saturated stars will enable detections of the populous red clump star population in the Galactic bulge. If the survey efficiency is better than expected, we argue for repeat observations of the same fields to improve photometric precision, or covering additional fields to expand the stellar population reach if the photometric precision for saturated stars is better than 1 mmag. Asteroseismology is relatively insensitive to the timing of the observations during the mission, and the prime red clump targets can be observed in a single 70 day campaign in any given field. Complementary stellar characterization, particularly astrometry tied to the Gaia system, will also dramatically expand the diagnostic power of asteroseismology. We also highlight synergies to Roman GBTDS exoplanet science using transits and microlensing
- …