13 research outputs found
Survival benefit with checkpoint inhibitors versus chemotherapy is modified by brain metastases in patients with recurrent small cell lung cancer
IntroductionSmall cell lung cancer (SCLC) is a rapidly growing malignancy with early distant metastases. Up to 70% will develop brain metastases, and the poor prognosis of these patients has not changed considerably. The potential of checkpoint inhibitors (CPI) in treating recurrent (r/r) SCLC and their effect on brain metastases remain unclear.MethodsIn this retrospective multicenter study, we analyzed r/r SCLC patients receiving second or further-line CPI versus chemotherapy between 2010 and 2020. We applied multivariable-adjusted Cox regression analysis to test for differences in 1-year mortality and real-world progression. We then used interaction analysis to evaluate whether brain metastases (BM) and/or cranial radiotherapy (CRT) modified the effect of CPI versus chemotherapy on overall survival.ResultsAmong 285 patients, 99 (35%) received CPI and 186 (65%) patients received chemotherapy. Most patients (93%) in the CPI group received nivolumab/ipilimumab. Chemotherapy patients were entirely CPI-naïve and only one CPI patient had received atezolizumab for first-line treatment. CPI was associated with a lower risk of 1-year mortality (adjusted Hazard Ratio [HRadj] 0.59, 95% CI 0.42 to 0.82, p=0.002). This benefit was modified by BM and CRT, indicating a pronounced effect in patients without BM (with CRT: HRadj 0.34, p=0.003; no CRT: HRadj 0.50, p=0.05), while there was no effect in patients with BM who received CRT (HRadj 0.85, p=0.59).ConclusionCPI was associated with a lower risk of 1-year mortality compared to chemotherapy. However, the effect on OS was significantly modified by intracranial disease and radiotherapy, suggesting the benefit was driven by patients without BM
Analyse multizellulärer Systeme unter Dehnung / Analysis of multicellular systems unter strain
Multiple Targets for Oxysterols in Their Regulation of the Immune System
Oxysterols, or cholesterol oxidation products, are naturally occurring lipids which regulate the physiology of cells, including those of the immune system. In contrast to effects that are mediated through nuclear receptors or by epigenetic mechanism, which take tens of minutes to occur, changes in the activities of cell-surface receptors caused by oxysterols can be extremely rapid, often taking place within subsecond timescales. Such cell-surface receptor effects of oxysterols allow for the regulation of fast cellular processes, such as motility, secretion and endocytosis. These cellular processes play critical roles in both the innate and adaptive immune systems. This review will survey the two broad classes of cell-surface receptors for oxysterols (G-protein coupled receptors (GPCRs) and ion channels), the mechanisms by which cholesterol oxidation products act on them, and their presence and functions in the different cell types of the immune system. Overall, this review will highlight the potential of oxysterols, synthetic derivatives and their receptors for physiological and therapeutic modulation of the immune system.</jats:p
Multiple Targets for Oxysterols in Their Regulation of the Immune System
Oxysterols, or cholesterol oxidation products, are naturally occurring lipids which regulate the physiology of cells, including those of the immune system. In contrast to effects that are mediated through nuclear receptors or by epigenetic mechanism, which take tens of minutes to occur, changes in the activities of cell-surface receptors caused by oxysterols can be extremely rapid, often taking place within subsecond timescales. Such cell-surface receptor effects of oxysterols allow for the regulation of fast cellular processes, such as motility, secretion and endocytosis. These cellular processes play critical roles in both the innate and adaptive immune systems. This review will survey the two broad classes of cell-surface receptors for oxysterols (G-protein coupled receptors (GPCRs) and ion channels), the mechanisms by which cholesterol oxidation products act on them, and their presence and functions in the different cell types of the immune system. Overall, this review will highlight the potential of oxysterols, synthetic derivatives and their receptors for physiological and therapeutic modulation of the immune system
Combined immune checkpoint blockade (anti-PD-1/anti-CTLA-4): Evaluation and management of adverse drug reactions
Background: Combined immune checkpoint blockade (ICB) provides unprecedented efficacy gains in numerous cancer indications, with PD-1 inhibitor nivolumab plus CTLA-4 inhibitor ipilimumab in advanced melanoma as first-ever approved therapies for combined ICB. However, gains in efficacy must be balanced against a higher frequency and severity of adverse drug reactions (ADR). Because delays in diagnosis and management might result in symptom worsening and further complications, clinicians shall be well trained to identify ADR promptly and monitor patients adequately. This paper reviews safety data assessed by the European Medicines Agency for the anti-PD-1/CTLA-4 combination and provides a literature overview on published case reports for rare ADR with suspected potential underreporting. Incidences and kinetics of immune-related ADR are described. Recommendations for the evaluation and management of ADR are convened by an interdisciplinary expert panel focusing on rare but clinically important side effects arising from combined ICB. Background: Pooled safety data from 1551 patients with advanced melanoma, treated either with 3 mg/kg ipilimumab plus 1 mg/kg nivolumab (N = 407), or nivolumab alone (N = 787), or ipilimumab alone (N = 357) demonstrate that immune-related ADR occur more frequently for the combination, with a shorter time-to-onset, and tend to be more severe. The majority of events is reversible after systemic use of glucocorticoids, notably methylprednisolone or equivalents;in certain cases of long-lasting and refractory immune toxicities, non-steroidal immunosuppressants may be used, once ICB is interrupted or terminated. Combined ICB has considerable toxicities, therefore close monitoring and high experience in diagnosis and treatment of ADR is necessary
Acetylation of conserved lysines fine-tune mitochondrial malate dehydrogenase activity in land plants
AbstractPlants need to rapidly and flexibly adjust their metabolism to changes of their immediate environment. Since this necessity results from the sessile lifestyle of land plants, key mechanisms for orchestrating central metabolic acclimation are likely to have evolved early. Here, we explore the role of lysine acetylation as a posttranslational modification to directly modulate metabolic function. We generated a lysine acetylome of the moss Physcomitrium patens and identified 638 lysine acetylation sites, mostly found in mitochondrial and plastidial proteins. A comparison with available angiosperm data pinpointed lysine acetylation as a conserved regulatory strategy in land plants. Focusing on mitochondrial central metabolism, we functionally analyzed acetylation of malate dehydrogenase (mMDH), which acts as a hub of plant metabolic flexibility. In P. patens mMDH1, we detected a single acetylated lysine located next to one of the four acetylation sites detected in Arabidopsis thaliana mMDH1. We assessed the kinetic behavior of recombinant A. thaliana and P. patens mMDH1 with site-specifically incorporated acetyl-lysines. Acetylation of A. thaliana mMDH1 at K169, K170, and K334 decreases its oxaloacetate reduction activity, while acetylation of P. patens mMDH1 at K172 increases this activity. We found modulation of the malate oxidation activity only in A. thaliana mMDH1, where acetylation of K334 highly activated it. Comparative homology modelling of MDH proteins revealed that evolutionarily conserved lysines serve as hotspots of acetylation. Our combined analyses indicate lysine acetylation as a common strategy to fine-tune the activity of central metabolic enzymes with likely impact on plant acclimation capacity.Significance statementWe explore the role of lysine acetylation as a mechanism to directly modulate mitochondrial metabolism in land plants by generating the lysine acetylome of the moss Physcomitrium patens and comparing with available angiosperm data. We found acetylation of evolutionarily conserved lysines as a strategy to fine-tune the activity of mitochondrial malate dehydrogenase in a species-dependent molecular context.</jats:sec
Ligand entry pathways control the chemical space recognized by GPR183
International audienceThe G protein-coupled receptor GPR183 utilizes two ligand entry channels: one lateral between transmembrane helices 4 and 5 facing the membrane, and one facing the extracellular environment to recognize chemically diverse ligands
Ligand entry pathways control the chemical space recognized by GPR183
The G protein-coupled receptor GPR183 is a chemotactic receptor with an important function in the immune system and association with a variety of diseases. It recognizes ligands with diverse physicochemical properties as both the endogenous oxysterol ligand 7α,25-OHC and synthetic molecules can activate the G protein pathway of the receptor. To better understand the ligand promiscuity of GPR183, we utilized both molecular dynamics simulations and cell-based validation experiments. Our work reveals that the receptor possesses two ligand entry channels: one lateral between transmembrane helices 4 and 5 facing the membrane, and one facing the extracellular environment. Using enhanced sampling, we provide a detailed structural model of 7α,25-OHC entry through the lateral membrane channel. Importantly, the first ligand recognition point at the receptor surface has been captured in diverse experimentally solved structures of different GPCRs. The proposed ligand binding pathway is supported by in vitro data employing GPR183 mutants with a sterically blocked lateral entrance, which display diminished binding and signaling. In addition, computer simulations and experimental validation confirm the existence of a polar water channel which might serve as an alternative entrance gate for less lipophilic ligands from the extracellular milieu. Our study reveals knowledge to understand GPR183 functionality and ligand recognition with implications for the development of drugs for this receptor. Beyond, our work provides insights into a general mechanism GPCRs may use to respond to chemically diverse ligands
Diagnosis, monitoring and management of immune-related adverse drug reactions of anti-PD-1 antibody therapy
Acetylation of conserved lysines fine-tunes mitochondrial malate dehydrogenase activity in land plants
Plants need to rapidly and flexibly adjust their metabolism to changes of their immediate environment. Since this necessity results from the sessile lifestyle of land plants, key mechanisms for orchestrating central metabolic acclimation are likely to have evolved early. Here, we explore the role of lysine acetylation as a post-translational modification to directly modulate metabolic function. We generated a lysine acetylome of the moss Physcomitrium patens and identified 638 lysine acetylation sites, mostly found in mitochondrial and plastidial proteins. A comparison with available angiosperm data pinpointed lysine acetylation as a conserved regulatory strategy in land plants. Focusing on mitochondrial central metabolism, we functionally analyzed acetylation of mitochondrial malate dehydrogenase (mMDH), which acts as a hub of plant metabolic flexibility. In P. patens mMDH1, we detected a single acetylated lysine located next to one of the four acetylation sites detected in Arabidopsis thaliana mMDH1. We assessed the kinetic behavior of recombinant A. thaliana and P. patens mMDH1 with site-specifically incorporated acetyl-lysines. Acetylation of A. thaliana mMDH1 at K169, K170, and K334 decreases its oxaloacetate reduction activity, while acetylation of P. patens mMDH1 at K172 increases this activity. We found modulation of the malate oxidation activity only in A. thaliana mMDH1, where acetylation of K334 strongly activated it. Comparative homology modeling of MDH proteins revealed that evolutionarily conserved lysines serve as hotspots of acetylation. Our combined analyses indicate lysine acetylation as a common strategy to fine-tune the activity of central metabolic enzymes with likely impact on plant acclimation capacity
