109 research outputs found

    Protein behavior in crowded environments

    Get PDF
    The cell’s interior is a complex milieu where proteins exist in an environment crowded with other macromolecules. The influence of macromolecular crowding is prevalent in every cellular function—from metabolism to signal transduction to protein folding. It is even hypothesized that macromolecular crowding dictates the organization of the intracellular environment and the evolution of a single-cell species. Even though proteins are prevalent in every biochemical process, we lack fundamental knowledge about how crowding affects proteins. When studying proteins in a crowded environment, one can either develop a system that mimics the cellular interior or develop a technique that observes proteins inside cells. Herein, I report a residue-level interrogation on the stability of chymotrypsin inhibitor 2 under macromolecular crowded conditions. This is the first study that offers comprehensive information about the effects of crowding on the stability of the native state of a globular protein. I also present observations about the behavior of globular, partially-folded, and natively-disordered proteins inside living E. coli and the consequences for in-cell NMR. Lastly, I discuss our progress in transitioning from in-cell NMR for living E. coli to the yeast, Pichia pastoris

    Characterization of a far-red analog of ghrelin for imaging GHS-R in P19-derived cardiomyocytes.

    Get PDF
    Ghrelin and its receptor, the growth hormone secretagogue receptor (GHS-R), are expressed in the heart, and may function to promote cardiomyocyte survival, differentiation and contractility. Previously, we had generated a truncated analog of ghrelin conjugated to fluorescein isothiocyanate for the purposes of determining GHS-R expression in situ. We now report the generation and characterization of a far-red ghrelin analog, [Dpr(3)(octanoyl), Lys(19)(Cy5)]ghrelin (1-19), and show that it can be used to image changes in GHS-R in developing cardiomyocytes. We also generated the des-acyl analog, des-acyl [Lys(19)(Cy5)]ghrelin (1-19) and characterized its binding to mouse heart sections. Receptor binding affinity of Cy5-ghrelin as measured in HEK293 cells overexpressing GHS-R1a was within an order of magnitude of that of fluorescein-ghrelin and native human ghrelin, while the des-acyl Cy5-ghrelin did not bind GHS-R1a. Live cell imaging in HEK293/GHS-R1a cells showed cell surface labeling that was displaced by excess ghrelin. Interestingly, Cy5-ghrelin, but not the des-acyl analog, showed concentration-dependent binding in mouse heart tissue sections. We then used Cy5-ghrelin to track GHS-R expression in P19-derived cardiomyocytes. Live cell imaging at different time points after DMSO-induced differentiation showed that GHS-R expression preceded that of the differentiation marker aMHC and tracked with the contractility marker SERCA 2a. Our far-red analog of ghrelin adds to the tools we are developing to map GHS-R in developing and diseased cardiac tissues

    A bioreactor for in-cell protein NMR

    Get PDF
    The inside of the cell is a complex environment that is difficult to simulate when studying proteins and other molecules in vitro. We have developed a device and system that provides a controlled environment for Nuclear Magnetic Resonance (NMR) experiments involving living cells. Our device comprises two main parts, an NMR detection region and a circulation system. The flow of medium from the bottom of the device pushes alginate encapsulated cells into the circulation chamber. In the chamber, the exchange of oxygen and nutrients occurs between the media and the encapsulated cells. When the media flow is stopped, the encapsulated cells fall back into the NMR detection region, and spectra can be acquired. We have utilized the bioreactor to study the expression of the natively disordered protein α-synuclein, inside Escherichia coli cells

    Residue-Level Interrogation of Macromolecular Crowding Effects on Protein Stability

    Get PDF
    Theory predicts that macromolecular crowding affects protein behavior, but experimental confirmation is scant. Herein, we report the first residue-level interrogation of the effects of macromolecular crowding on protein stability. We observe up to a 100-fold increase in the stability, as measured by the equilibrium constant for folding, for the globular protein chymotrypsin inhibitor 2 (CI2) in concentrations of the cosolute poly(vinylpyrrolidone) (PVP) that mimic the protein concentration in cells. We show that the increased stability is caused by the polymeric nature of PVP and that the degree of stabilization depends on both the location of the individual residue in the protein structure and the PVP concentration. Our data reinforce the assertion that macromolecular crowding stabilizes the protein by destabilizing its unfolded states

    Differential Dynamical Effects of Macromolecular Crowding on an Intrinsically Disordered Protein and a Globular Protein: Implications for In-Cell NMR Spectroscopy

    Get PDF
    In-cell NMR provides a valuable means to assess how macromolecules, with concentrations up to 300 g/L in the cytoplasm, affect the structure and dynamics of proteins at atomic resolution. Here an intrinsically disordered protein, alpha-synuclein (alphaSN), and a globular protein, chymotrypsin inhibitor 2 (CI2) were examined by using in-cell NMR. High-resolution in-cell spectra of alphaSN can be obtained, but CI2 leaks from the cell and the remaining intracellular CI2 is not detectable. Even after stabilizing the cells from leakage by using alginate encapsulation, no CI2 signal is detected. From in vitro studies we conclude that this difference in detectability is the result of the differential dynamical response of disordered and ordered proteins to the changes of motion caused by the increased viscosity in cells

    Rhesus TRIM5α disrupts the HIV-1 capsid at the inter-hexamer interfaces

    Get PDF
    TRIM proteins play important roles in the innate immune defense against retroviral infection, including human immunodeficiency virus type-1 (HIV-1). Rhesus macaque TRIM5α (TRIM5αrh) targets the HIV-1 capsid and blocks infection at an early post-entry stage, prior to reverse transcription. Studies have shown that binding of TRIM5α to the assembled capsid is essential for restriction and requires the coiled-coil and B30.2/SPRY domains, but the molecular mechanism of restriction is not fully understood. In this study, we investigated, by cryoEM combined with mutagenesis and chemical cross-linking, the direct interactions between HIV-1 capsid protein (CA) assemblies and purified TRIM5αrh containing coiled-coil and SPRY domains (CC-SPRYrh). Concentration-dependent binding of CC-SPRYrh to CA assemblies was observed, while under equivalent conditions the human protein did not bind. Importantly, CC-SPRYrh, but not its human counterpart, disrupted CA tubes in a non-random fashion, releasing fragments of protofilaments consisting of CA hexamers without dissociation into monomers. Furthermore, such structural destruction was prevented by inter-hexamer crosslinking using P207C/T216C mutant CA with disulfide bonds at the CTD-CTD trimer interface of capsid assemblies, but not by intra-hexamer crosslinking via A14C/E45C at the NTD-NTD interface. The same disruption effect by TRIM5αrh on the inter-hexamer interfaces also occurred with purified intact HIV-1 cores. These results provide insights concerning how TRIM5α disrupts the virion core and demonstrate that structural damage of the viral capsid by TRIM5α is likely one of the important components of the mechanism of TRIM5α-mediated HIV-1 restriction. © 2011 Zhao et al

    Depression and sickness behavior are Janus-faced responses to shared inflammatory pathways

    Get PDF
    It is of considerable translational importance whether depression is a form or a consequence of sickness behavior. Sickness behavior is a behavioral complex induced by infections and immune trauma and mediated by pro-inflammatory cytokines. It is an adaptive response that enhances recovery by conserving energy to combat acute inflammation. There are considerable phenomenological similarities between sickness behavior and depression, for example, behavioral inhibition, anorexia and weight loss, and melancholic (anhedonia), physio-somatic (fatigue, hyperalgesia, malaise), anxiety and neurocognitive symptoms. In clinical depression, however, a transition occurs to sensitization of immuno-inflammatory pathways, progressive damage by oxidative and nitrosative stress to lipids, proteins, and DNA, and autoimmune responses directed against self-epitopes. The latter mechanisms are the substrate of a neuroprogressive process, whereby multiple depressive episodes cause neural tissue damage and consequent functional and cognitive sequelae. Thus, shared immuno-inflammatory pathways underpin the physiology of sickness behavior and the pathophysiology of clinical depression explaining their partially overlapping phenomenology. Inflammation may provoke a Janus-faced response with a good, acute side, generating protective inflammation through sickness behavior and a bad, chronic side, for example, clinical depression, a lifelong disorder with positive feedback loops between (neuro)inflammation and (neuro)degenerative processes following less well defined triggers

    Search for gravitational wave bursts in LIGO's third science run

    Get PDF
    We report on a search for gravitational wave bursts in data from the three LIGO interferometric detectors during their third science run. The search targets subsecond bursts in the frequency range 100-1100 Hz for which no waveform model is assumed, and has a sensitivity in terms of the root-sum-square (rss) strain amplitude of hrss ~ 10^{-20} / sqrt(Hz). No gravitational wave signals were detected in the 8 days of analyzed data.Comment: 12 pages, 6 figures. Amaldi-6 conference proceedings to be published in Classical and Quantum Gravit

    Quantum state preparation and macroscopic entanglement in gravitational-wave detectors

    Full text link
    Long-baseline laser-interferometer gravitational-wave detectors are operating at a factor of 10 (in amplitude) above the standard quantum limit (SQL) within a broad frequency band. Such a low classical noise budget has already allowed the creation of a controlled 2.7 kg macroscopic oscillator with an effective eigenfrequency of 150 Hz and an occupation number of 200. This result, along with the prospect for further improvements, heralds the new possibility of experimentally probing macroscopic quantum mechanics (MQM) - quantum mechanical behavior of objects in the realm of everyday experience - using gravitational-wave detectors. In this paper, we provide the mathematical foundation for the first step of a MQM experiment: the preparation of a macroscopic test mass into a nearly minimum-Heisenberg-limited Gaussian quantum state, which is possible if the interferometer's classical noise beats the SQL in a broad frequency band. Our formalism, based on Wiener filtering, allows a straightforward conversion from the classical noise budget of a laser interferometer, in terms of noise spectra, into the strategy for quantum state preparation, and the quality of the prepared state. Using this formalism, we consider how Gaussian entanglement can be built among two macroscopic test masses, and the performance of the planned Advanced LIGO interferometers in quantum-state preparation
    corecore