1,485 research outputs found

    Perceptions of sport science students on the potential applications and limitations of blended learning in their education: A qualitative study

    Get PDF
    This study sought to gain insight into blended learning-naive sports science students’ understanding and perceptions of the potential benefits and limitations of blended (hybrid) learning, which has been defined as the thoughtful integration of face-to-face and online instructional approaches. Five focus groups, each comprising 3–4 students from either the undergraduate or postgraduate sports science programmes were conducted. The focus groups were facilitated by a researcher who was not involved in sports science. Audio recordings of the focus groups were transcribed verbatim. NVivo software was used to code the transcripts to identify the themes and subthemes. Students generally had little initial understanding of blended learning. When provided with a definition, they believed that blended learning could improve educational outcomes and assist those who were legitimately unable to attend a session. Their reservations about blended learning mainly related to some students not being sufficiently autonomous to undertake independent study, timetabling considerations and access to reliable Internet services. For blended learning to be effective, students felt the online material had to be interactive, engaging and complement the face-to-face sessions. Better understanding the perceptions of the students in the current study may assist educators who are considering implementing blended learning in their teaching. © 2017 Informa UK Limited, trading as Taylor & Francis Grou

    Short‐term hyperglycemia produces oxidative damage and apoptosis in neurons

    Full text link
    Dorsal root ganglia neurons in culture die through programmed cell death when exposed to elevated glucose, providing an in vitro model system for the investigation of the mechanisms leading to diabetic neuropathy. This study examines the time course of programmed cell death induction, regulation of cellular antioxidant capacity, and the protective effects of antioxidants in neurons exposed to hyperglycemia. We demonstrate that the first 2 h of hyperglycemia are sufficient to induce oxidative stress and programmed cell death. Using fluorimetric analysis of reactive oxygen species (ROS) production, in vitro assays of antioxidant enzymes, and immunocytochemical assays of cell death, we demonstrate superoxide formation, inhibition of aconitase, and lipid peroxidation within 1 h of hyperglycemia. These are followed by caspase‐3 activation and DNA fragmentation. Antioxidant potential increases by 3–6 h but is insufficient to protect these neurons. Application of the antioxidant α‐lipoic acid potently prevents glucose‐induced oxidative stress and cell death. This study identifies cellular therapeutic targets to prevent diabetic neuropathy. Since oxidative stress is a common feature of the micro‐ and macrovascular complications of diabetes, the present findings have broad application to the treatment of diabetic patients.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154304/1/fsb2fj042513fje.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154304/2/fsb2fj042513fje-sup-0001.pd

    Cell Culture Modeling to Test Therapies Against Hyperglycemia-Mediated Oxidative Stress and Injury

    Full text link
    The concept that oxidative stress is a key mediator of nerve injury in diabetes has led us to design therapies that target oxidative stress mechanisms. Using an in vitro model of glucose-treated dorsal root ganglion (DRG) neurons in culture, we can examine both free radical generation, using fluorimetric probes for reactive oxygen species, and cell death via the TUNEL assay. The cell culture system is scaled down to a 96-well plate format, and so is well suited to high-throughput screening. In the present study, we test the ability of three drugs, nicotinamide, allopurinol, and α-lipoic acid, alone and in combination to prevent DRG neuron oxidative stress and cell death. This combination of drugs is currently in clinical trial in type 1 diabetic patients. We demonstrate independent effects on oxidative stress and neuronal survival for the three drugs, and neuronal protection using the three drugs in combination. The data strengthen the rationale for the current clinical trial. In addition, we describe an effective tool for rapid preclinical testing of novel therapies against diabetic neuropathy. Antioxid. Redox Signal. 7, 1494–1506.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63115/1/ars.2005.7.1494.pd

    Surface Gravities for 228 M, L, and T Dwarfs in the NIRSPEC Brown Dwarf Spectroscopic Survey

    Get PDF
    We combine 131 new medium-resolution (R~2000) J-band spectra of M, L, and T dwarfs from the Keck NIRSPEC Brown Dwarf Spectroscopic Survey (BDSS) with 97 previously published BDSS spectra to study surface-gravity-sensitive indices for 228 low-mass stars and brown dwarfs spanning spectral types M5-T9. Specifically, we use an established set of spectral indices to determine surface gravity classifications for all M6-L7 objects in our sample by measuring equivalent widths (EW) of the K I lines at 1.1692, 1.1778, 1.2529 um, and the 1.2 um FeHJ absorption index. Our results are consistent with previous surface gravity measurements, showing a distinct double peak - at ~L5 and T5 - in K I EW as a function of spectral type. We analyze K I EWs of 73 objects of known ages and find a linear trend between log(Age) and EW. From this relationship, we assign age ranges to the very low gravity, intermediate gravity, and field gravity designations for spectral types M6-L0. Interestingly, the ages probed by these designations remain broad, change with spectral type, and depend on the gravity sensitive index used. Gravity designations are useful indicators of the possibility of youth, but current datasets cannot be used to provide a precise age estimate.Comment: 33 pages, 13 figures, ApJ in pres

    Sensory Neurons and Schwann Cells Respond to Oxidative Stress by Increasing Antioxidant Defense Mechanisms

    Full text link
    Abstract Elevated blood glucose is a key initiator of mechanisms leading to diabetic neuropathy. Increases in glucose induce acute mitochondrial oxidative stress in dorsal root ganglion (DRG) neurons, the sensory neurons normally affected in diabetic neuropathy, whereas Schwann cells are largely unaffected. We propose that activation of an antioxidant response in DRG neurons would prevent glucose-induced injury. In this study, mild oxidative stress (1 ÎŒM H2O2) leads to the activation of the transcription factor Nrf2 and expression of antioxidant (phase II) enzymes. DRG neurons are thus protected from subsequent hyperglycemia-induced injury, as determined by activation of caspase 3 and the TUNEL assay. Schwann cells display high basal antioxidant enzyme expression and respond to hyperglycemia and mild oxidative stress via further increases in these enzymes. The botanical compounds resveratrol and sulforaphane activate the antioxidant response in DRG neurons. Other drugs that protect DRG neurons and block mitochondrial superoxide, identified in a compound screen, have differential ability to activate the antioxidant response. Multiple cellular targets exist for the prevention of hyperglycemic oxidative stress in DRG neurons, and these form the basis for new therapeutic strategies against diabetic neuropathy. Antioxid. Redox Signal. 11, 425-438.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78129/1/ars.2008.2235.pd

    Fenitrothion: toxicokinetics and toxicologic evaluation in human volunteers.

    Get PDF
    An unblinded crossover study of fenitrothion 0.18 mg/kg/day [36 times the acceptable daily intake (ADI)] and 0.36 mg/kg/day (72 X ADI) administered as two daily divided doses for 4 days in 12 human volunteers was designed and undertaken after results from a pilot study. On days 1 and 4, blood and urine samples were collected for analysis of fenitrothion and its major metabolites, as well as plasma and red blood cell cholinesterase activities, and biochemistry and hematology examination. Pharmacokinetic parameters could only be determined at the higher dosage, as there were insufficient measurable fenitrothion blood levels at the lower dosage and the fenitrooxone metabolite could not be measured. There was a wide range of interindividual variability in blood levels, with peak levels achieved between 1 and 4 hr and a half-life for fenitrothion of 0.8-4.5 hr. Although based on the half-life, steady-state levels should have been achieved; the area under the curve (AUC)(0-12 hr) to AUC(0-(infinity) )ratio of 1:3 suggested accumulation of fenitrothion. There was no significant change in plasma or red blood cell cholinesterase activity with repeated dosing at either dosage level of fenitrothion, and there were no significant abnormalities detected on biochemical or hematologic monitoring

    Classification and Regression Tree (CART) analysis to predict influenza in primary care patients

    Get PDF
    Abstract Background The use of neuraminidase-inhibiting anti-viral medication to treat influenza is relatively infrequent. Rapid, cost-effective methods for diagnosing influenza are needed to enable appropriate prescribing. Multi-viral respiratory panels using reverse transcription polymerase chain reaction (PCR) assays to diagnose influenza are accurate but expensive and more time-consuming than low sensitivity rapid influenza tests. Influenza clinical decision algorithms are both rapid and inexpensive, but most are based on regression analyses that do not account for higher order interactions. This study used classification and regression trees (CART) modeling to estimate probabilities of influenza. Methods Eligible enrollees ≄ 5 years old (n = 4,173) who presented at ambulatory centers for treatment of acute respiratory illness (≀7 days) with cough or fever in 2011–2012, provided nasal and pharyngeal swabs for PCR testing for influenza, information on demographics, symptoms, personal characteristics and self-reported influenza vaccination status. Results Antiviral medication was prescribed for just 15 % of those with PCR-confirmed influenza. An algorithm that included fever, cough, and fatigue had sensitivity of 84 %, specificity of 48 %, positive predictive value (PPV) of 23 % and negative predictive value (NPV) of 94 % for the development sample. Conclusions The CART algorithm has good sensitivity and high NPV, but low PPV for identifying influenza among outpatients ≄5 years. Thus, it is good at identifying a group who do not need testing or antivirals and had fair to good predictive performance for influenza. Further testing of the algorithm in other influenza seasons would help to optimize decisions for lab testing or treatment.http://deepblue.lib.umich.edu/bitstream/2027.42/134640/1/12879_2016_Article_1839.pd

    Translating In Vivo Metabolomic Analysis of Succinate Dehydrogenase–Deficient Tumors Into Clinical Utility

    Get PDF
    Purpose Mutations in the mitochondrial enzyme succinate dehydrogenase (SDH) subunit genes are associated with a wide spectrum of tumors, including pheochromocytomas and paragangliomas, GI stromal tumors, renal cell carcinomas, and pituitary adenomas. SDH-related tumorigenesis is believed to be secondary to accumulation of the oncometabolite succinate. Our aim was to investigate the potential clinical applications of proton-1 magnetic resonance spectroscopy (1H-MRS) in a range of suspected SDH-related tumors. Patients and Methods Fifteen patients were recruited to this study. Respiratory-gated single-voxel 1H-MRS was performed at 3T to quantify the content of succinate at 2.4 ppm and choline at 3.22 ppm. Results A succinate peak was seen in six patients, all of whom had germ line SDHx mutations or loss of SDHB by immunohistochemistry. Succinate peaks were also detected in two patients with metastatic wild-type GI stromal tumors and no detectable germ line SDHx mutations but with somatic epimutations in SDHC. Three patients without tumor succinate peaks retained SDHB expression, consistent with SDH functionality. In six patients with borderline or absent peaks, technical difficulties such as motion artifact rendered 1H-MRS difficult to interpret. Sequential imaging in a patient with a metastatic abdominal paraganglioma demonstrated loss of the succinate peak after four cycles of [177Lu]DOTATATE, with a corresponding biochemical response in normetanephrine. Conclusion This study has demonstrated the translation into clinical practice of in vivo metabolomic analysis using 1H-MRS in patients with SDH-deficient tumors. Potential applications include noninvasive diagnosis and disease stratification, as well as monitoring of tumor response to targeted treatments. </jats:sec

    Vaccine effectiveness against COVID-19 among symptomatic persons aged ≄12 years with reported contact with COVID-19 cases, February-September 2021

    Get PDF
    BACKGROUND: Individuals in contact with persons with COVID-19 are at high risk of developing COVID-19; protection offered by COVID-19 vaccines in the context of known exposure is poorly understood. METHODS: Symptomatic outpatients aged ≄12 years reporting acute onset of COVID-19-like illness and tested for SARS-CoV-2 between February 1 and September 30, 2021 were enrolled. Participants were stratified by self-report of having known contact with a COVID-19 case in the 14 days prior to illness onset. Vaccine effectiveness was evaluated using the test-negative study design and multivariable logistic regression. RESULTS: Among 2229 participants, 283/451 (63%) of those reporting contact and 331/1778 (19%) without known contact tested SARS-CoV-2-positive. Adjusted vaccine effectiveness was 71% (95% confidence interval [CI], 49%-83%) among fully vaccinated participants reporting a known contact versus 80% (95% CI, 72%-86%) among those with no known contact (p-value for interaction = 0.2). CONCLUSIONS: This study contributes to growing evidence of the benefits of vaccinations in preventing COVID-19 and support vaccination recommendations and the importance of efforts to increase vaccination coverage

    Phenotypic and molecular characterisation of CDK13-related congenital heart defects, dysmorphic facial features and intellectual developmental disorders

    Get PDF
    Background: De novo missense variants in CDK13 have been described as the cause of syndromic congenital heart defects in seven individuals ascertained from a large congenital cardiovascular malformations cohort. We aimed to further define the phenotypic and molecular spectrum of this newly described disorder. Methods: To minimise ascertainment bias, we recruited nine additional individuals with CDK13 pathogenic variants from clinical and research exome laboratory sequencing cohorts. Each individual underwent dysmorphology exam and comprehensive medical history review. Results: We demonstrate greater than expected phenotypic heterogeneity, including 33% (3/9) of individuals without structural heart disease on echocardiogram. There was a high penetrance for a unique constellation of facial dysmorphism and global developmental delay, as well as less frequently seen renal and sacral anomalies. Two individuals had novel CDK13 variants (p.Asn842Asp, p.Lys734Glu), while the remaining seven unrelated individuals had a recurrent, previously published p.Asn842Ser variant. Summary of all variants published to date demonstrates apparent restriction of pathogenic variants to the protein kinase domain with clustering in the ATP and magnesium binding sites. Conclusions: Here we provide detailed phenotypic and molecular characterisation of individuals with pathogenic variants in CDK13 and propose management guidelines based upon the estimated prevalence of anomalies identified. Keywords: CDK13, CHDFIDD, De novo variant, Neurodevelopmental disorders, Agenesis of the corpus callosum, Hypertelorism, Developmental delay, Cyclin-dependent kinase, Undiagnosed Diseases Networ
    • 

    corecore