171 research outputs found

    Reactome - a knowledgebase of human biological pathways

    Get PDF
    Pathway curation is a powerful tool for systematically associating gene products with functions. Reactome (www.reactome.org) is a manually curated human pathway knowledgebase describing a wide range of biological processes in a computationally accessible manner. The core unit of the Reactome data model is the Reaction, whose instances form a network of biological interactions through entities that are consumed, produced, or act as catalysts. Entities are distinguished by their molecular identities and cellular locations. Set objects allow grouping of related entities. Curation is based on communication between expert authors and staff curators, facilitated by freely available data entry tools. Manually curated data are subjected to quality control and peer review by a second expert. Reactome data are released quarterly. At release time, electronic orthology inference performed on human data produces reaction predictions in 22 species ranging from mouse to bacteria. Cross-references to a large number of publicly available databases are attached, providing multiple entry points into the database. The Reactome Mart allows query submission and data retrieval from Reactome and across other databases. The SkyPainter tool provides visualization and statistical analysis of user supplied data, e.g. from microarray experiments. Reactome data are freely available in a number of data formats (e.g. BioPax, SBML)

    Dynamic Informed Consent Processes Vital for Treatment with Antidepressants

    Get PDF
    Advances in technology and transparency have greatly accelerated the ability of clinicians to remain current with regards to being informed and informing patients about the risk/benefit ratio when considering antidepressant medication. In spite of this, the current climate of pharmaceutical industry influence on medical practice does much to hinder informed consent processes. Recent findings of previously unknown and potentially dangerous adverse effects of the second- and third-generation classes of antidepressants underscore the importance of enhancing the practice of informed consent. After considering the concept of informed consent as it has evolved over time, the authors summarize some of the newer side effects associated with second- and third-generation antidepressants and then move on to describe impediments in the way of achieving adequate informed consent at the clinical encounter. Among these impediments, the authors discuss the impact of industry influence, cognitive bias in decision-making, and time constraints. These obstacles and the notion that modern antidepressants are not as safe as once thought offer an opportunity to revisit the process of informed consent. A dynamic concept of informed consent is proposed with the acknowledgement that a mere listing of side effects or pro forma approach to informed consent is inadequate, and that a deep and ongoing conversation with patients will more likely result in patient empowerment and a strengthening of the therapeutic alliance. This process is analogized to an “n=1” approach where patients’ idiosyncratic responses to second- and third-generation antidepressants can be used to update prior beliefs based on large-scale trials and allow patient and doctor to shoulder the burden of uncertainty together, thereby enhancing placebo and minimizing nocebo response and leading to more optimal treatment outcomes

    Environmental Traffic Assignment: Developing Emission-based Models

    Get PDF
    ABSTRACT Vehicle tailpipe emissions are major sources of air pollution and greenhouse gases. In addition to the ongoing efforts on emissions reduction, we believe there is a need to explore an innovating approach in which drivers routing decisions are influenced to minimize emissions and fuel consumption. In order to evaluate such transportation systems, we develop environmental traffic assignment models (E-TA) based on user equilibrium (UE) and system optimal (SO) behavioral principles. Extending the traditional travel time based UE and SO principles to E-TA is not straightforward because, unlike travel time, vehicle emissions increase with the increase in vehicle speed beyond a certain point. The results of various TA models show a network-wide traffic control strategy in which vehicles are routed according to SO based E-TA, can reduce system wide emissions. However, a system in which drivers make routing decisions to minimize their own emissions, (E-UE system) results in increased individual as well as systemwide emissions. KEY WORDS: Traffic Assignment, vehicle emissions, link cost function 3 Patil, Aultman-Hall, and Holme

    Reactome: a knowledge base of biologic pathways and processes

    Get PDF
    Reactome, an online curated resource for human pathway data, can be used to infer equivalent reactions in non-human species and as a tool to aid in the interpretation of microarrays and other high-throughput data sets

    Dual roles of the transmembrane protein p23/TMP21 in the modulation of amyloid precursor protein metabolism

    Get PDF
    BACKGROUND: Alzheimer's disease (AD) is characterized by cerebral deposition of β-amyloid (Aβ) peptides. Aβ is released from ectodomain cleaved amyloid precursor protein (APP) via intramembranous proteolysis by γ-secretase, a complex consisting of presenilin and a few other proteins. p23/TMP21, a member of the p24 family type I transmembrane proteins, was recently identified as a presenilin complex component capable of modulating γ-secretase cleavage. The p24 family proteins form oligomeric complexes and regulate vesicular trafficking in the early secretory pathway, but their role in APP trafficking has not been investigated. RESULTS: Here, we report that siRNA-mediated depletion of p23 in N2a neuroblastoma and HeLa cells produces concomitant knockdown of additional p24 family proteins and increases secretion of sAPP. Furthermore, intact cell and cell-free Aβ production increases following p23 knockdown, similar to data reported earlier using HEK293 cells. However, we find that p23 is not present in mature γ-secretase complexes isolated using an active-site γ-secretase inhibitor. Depletion of p23 and expression of a familial AD-linked PS1 mutant have additive effects on Aβ(42 )production. Knockdown of p23 expression confers biosynthetic stability to nascent APP, allowing its efficient maturation and surface accumulation. Moreover, immunoisolation analyses show decrease in co-residence of APP and the APP adaptor Mint3. Thus, multiple lines of evidence indicate that p23 function influences APP trafficking and sAPP release independent of its reported role in γ-secretase modulation. CONCLUSION: These data assign significance to p24 family proteins in regulating APP trafficking in the continuum of bidirectional transport between the ER and Golgi, and ascribe new relevance to the regulation of early trafficking in AD pathogenesis

    Evaluation of Serologic and Antigenic Relationships Between Middle Eastern Respiratory Syndrome Coronavirus and Other Coronaviruses to Develop Vaccine Platforms for the Rapid Response to Emerging Coronaviruses

    Get PDF
    Background. Middle East respiratory syndrome coronavirus (MERS-CoV) emerged in 2012, causing severe acute respiratory disease and pneumonia, with 44% mortality among 136 cases to date. Design of vaccines to limit the virus spread or diagnostic tests to track newly emerging strains requires knowledge of antigenic and serologic relationships between MERS-CoV and other CoVs

    A Mouse Model for Betacoronavirus Subgroup 2c Using a Bat Coronavirus Strain HKU5 Variant

    Get PDF
    ABSTRACT Cross-species transmission of zoonotic coronaviruses (CoVs) can result in pandemic disease outbreaks. Middle East respiratory syndrome CoV (MERS-CoV), identified in 2012, has caused 182 cases to date, with ~43% mortality, and no small animal model has been reported. MERS-CoV and Pipistrellus bat coronavirus (BtCoV) strain HKU5 of Betacoronavirus (β-CoV) subgroup 2c share >65% identity at the amino acid level in several regions, including nonstructural protein 5 (nsp5) and the nucleocapsid (N) protein, which are significant drug and vaccine targets. BtCoV HKU5 has been described in silico but has not been shown to replicate in culture, thus hampering drug and vaccine studies against subgroup 2c β-CoVs. We report the synthetic reconstruction and testing of BtCoV HKU5 containing the severe acute respiratory syndrome (SARS)-CoV spike (S) glycoprotein ectodomain (BtCoV HKU5-SE). This virus replicates efficiently in cell culture and in young and aged mice, where the virus targets airway and alveolar epithelial cells. Unlike some subgroup 2b SARS-CoV vaccines that elicit a strong eosinophilia following challenge, we demonstrate that BtCoV HKU5 and MERS-CoV N-expressing Venezuelan equine encephalitis virus replicon particle (VRP) vaccines do not cause extensive eosinophilia following BtCoV HKU5-SE challenge. Passage of BtCoV HKU5-SE in young mice resulted in enhanced virulence, causing 20% weight loss, diffuse alveolar damage, and hyaline membrane formation in aged mice. Passaged virus was characterized by mutations in the nsp13, nsp14, open reading frame 5 (ORF5) and M genes. Finally, we identified an inhibitor active against the nsp5 proteases of subgroup 2c β-CoVs. Synthetic-genome platforms capable of reconstituting emerging zoonotic viral pathogens or their phylogenetic relatives provide new strategies for identifying broad-based therapeutics, evaluating vaccine outcomes, and studying viral pathogenesis.IMPORTANCEThe 2012 outbreak of MERS-CoV raises the specter of another global epidemic, similar to the 2003 SARS-CoV epidemic. MERS-CoV is related to BtCoV HKU5 in target regions that are essential for drug and vaccine testing. Because no small animal model exists to evaluate MERS-CoV pathogenesis or to test vaccines, we constructed a recombinant BtCoV HKU5 that expressed a region of the SARS-CoV spike (S) glycoprotein, thereby allowing the recombinant virus to grow in cell culture and in mice. We show that this recombinant virus targets airway epithelial cells and causes disease in aged mice. We use this platform to (i) identify a broad-spectrum antiviral that can potentially inhibit viruses closely related to MERS-CoV, (ii) demonstrate the absence of increased eosinophilic immune pathology for MERS-CoV N protein-based vaccines, and (iii) mouse adapt this virus to identify viral genetic determinants of cross-species transmission and virulence. This study holds significance as a strategy to control newly emerging viruses

    Female Sex and Gender in Lung/Sleep Health and Disease. Increased Understanding of Basic Biological, Pathophysiological, and Behavioral Mechanisms Leading to Better Health for Female Patients with Lung Disease

    Get PDF
    Female sex/gender is an undercharacterized variable in studies related to lung development and disease. Notwithstanding, many aspects of lung and sleep biology and pathobiology are impacted by female sex and female reproductive transitions. These may manifest as differential gene expression or peculiar organ development. Some conditions are more prevalent in women, such as asthma and insomnia, or, in the case of lymphangioleiomyomatosis, are seen almost exclusively in women. In other diseases, presentation differs, such as the higher frequency of exacerbations experienced by women with chronic obstructive pulmonary disease or greater cardiac morbidity among women with sleep-disordered breathing. Recent advances in -omics and behavioral science provide an opportunity to specifically address sex-based differences and explore research needs and opportunities that will elucidate biochemical pathways, thus enabling more targeted/personalized therapies. To explore the status of and opportunities for research in this area, the NHLBI, in partnership with the NIH Office of Research on Women's Health and the Office of Rare Diseases Research, convened a workshop of investigators in Bethesda, Maryland on September 18 and 19, 2017. At the workshop, the participants reviewed the current understanding of the biological, behavioral, and clinical implications of female sex and gender on lung and sleep health and disease, and formulated recommendations that address research gaps, with a view to achieving better health outcomes through more precise management of female patients with nonneoplastic lung disease. This report summarizes those discussions
    corecore