6 research outputs found

    Clinical field-strength MRI of amyloid plaques induced by low-level cholesterol feeding in rabbits

    Get PDF
    Two significant barriers have limited the development of effective treatment of Alzheimer's disease. First, for many cases the aetiology is unknown and likely multi-factorial. Among these factors, hypercholesterolemia is a known risk predictor and has been linked to the formation of β-amyloid plaques, a pathological hallmark this disease. Second, standardized diagnostic tools are unable to definitively diagnose this disease prior to death; hence new diagnostic tools are urgently needed. Magnetic resonance imaging (MRI) using high field-strength scanners has shown promise for direct visualization of β-amyloid plaques, allowing in vivo longitudinal tracking of disease progression in mouse models. Here, we present a new rabbit model for studying the relationship between cholesterol and Alzheimer's disease development and new tools for direct visualization of β-amyloid plaques using clinical field-strength MRI. New Zealand white rabbits were fed either a low-level (0.125–0.25% w/w) cholesterol diet (n = 5) or normal chow (n = 4) for 27 months. High-resolution (66 × 66 × 100 µm3; scan time = 96 min) ex vivo MRI of brains was performed using a 3-Tesla (T) MR scanner interfaced with customized gradient and radiofrequency coils. β-Amyloid-42 immunostaining and Prussian blue iron staining were performed on brain sections and MR and histological images were manually registered. MRI revealed distinct signal voids throughout the brains of cholesterol-fed rabbits, whereas minimal voids were seen in control rabbit brains. These voids corresponded directly to small clusters of extracellular β-amyloid-positive plaques, which were consistently identified as iron-loaded (the presumed source of MR contrast). Plaques were typically located in the hippocampus, parahippocampal gyrus, striatum, hypothalamus and thalamus. Quantitative analysis of the number of histologically positive β-amyloid plaques (P < 0.0001) and MR-positive signal voids (P < 0.05) found in cholesterol-fed and control rabbit brains corroborated our qualitative observations. In conclusion, long-term, low-level cholesterol feeding was sufficient to promote the formation of extracellular β-amyloid plaque formation in rabbits, supporting the integral role of cholesterol in the aetiology of Alzheimer's disease. We also present the first evidence that MRI is capable of detecting iron-associated β-amyloid plaques in a rabbit model of Alzheimer's disease and have advanced the sensitivity of MRI for plaque detection to a new level, allowing clinical field-strength scanners to be employed. We believe extension of these technologies to an in vivo setting in rabbits is feasible and that our results support future work exploring the role of MRI as a leading imaging tool for this debilitating and life-threatening disease

    The neutron and its role in cosmology and particle physics

    Full text link
    Experiments with cold and ultracold neutrons have reached a level of precision such that problems far beyond the scale of the present Standard Model of particle physics become accessible to experimental investigation. Due to the close links between particle physics and cosmology, these studies also permit a deep look into the very first instances of our universe. First addressed in this article, both in theory and experiment, is the problem of baryogenesis ... The question how baryogenesis could have happened is open to experimental tests, and it turns out that this problem can be curbed by the very stringent limits on an electric dipole moment of the neutron, a quantity that also has deep implications for particle physics. Then we discuss the recent spectacular observation of neutron quantization in the earth's gravitational field and of resonance transitions between such gravitational energy states. These measurements, together with new evaluations of neutron scattering data, set new constraints on deviations from Newton's gravitational law at the picometer scale. Such deviations are predicted in modern theories with extra-dimensions that propose unification of the Planck scale with the scale of the Standard Model ... Another main topic is the weak-interaction parameters in various fields of physics and astrophysics that must all be derived from measured neutron decay data. Up to now, about 10 different neutron decay observables have been measured, much more than needed in the electroweak Standard Model. This allows various precise tests for new physics beyond the Standard Model, competing with or surpassing similar tests at high-energy. The review ends with a discussion of neutron and nuclear data required in the synthesis of the elements during the "first three minutes" and later on in stellar nucleosynthesis.Comment: 91 pages, 30 figures, accepted by Reviews of Modern Physic

    Earth Surface Mineral Dust Source Investigation: An Earth Science Imaging Spectroscopy Mission

    No full text
    The Earth Surface Mineral Dust Source Investigation, EMIT, is planned to operate from the International Space Station starting no earlier than the fall of 2021. EMIT will use visible to short wavelength infrared imaging spectroscopy to determine the mineral composition of the arid land dust source regions of the Earth to advance our knowledge of the radiative forcing effect of these aerosols. Mineral dust emitted into the atmosphere under high wind conditions is an element of the Earth system with many impacts to the Earth's energy balance, atmosphere, surface, and oceans. The Earth's mineral dust cycle with source, transport, and deposition phases are studied with advanced Earth System Models. Because the chemical composition, optical and surface properties of soil particles vary strongly with the mineral composition of the source, these models require knowledge of surface soil mineral dust source composition to accurately understand dust impacts on the Earth system now and in the future. At present, compositional knowledge of the Earth's mineral dust source regions from existing data sets is uncertain as a result of limited measurements. EMIT will use spectroscopically-derived surface mineral composition to update the prescribed boundary conditions for state-of-the-art Earth System Models. The EMIT-initialized models will be used to investigate the impact of direct radiative forcing in the Earth system that depends strongly on the composition of the mineral dust aerosols emitted into the atmosphere. These new measurements and related products will be used to address the EMIT science objectives and made available to the science community for additional investigations. An overview of the EMIT science, development, and mission is presented in this paper

    The Earth surface mineral dust source investigation: An Earth Science imaging spectroscopy mission

    No full text
    The Earth Surface Mineral Dust Source Investigation, EMIT, is planned to operate from the International Space Station starting no earlier than the fall of 2021. EMIT will use visible to short wavelength infrared imaging spectroscopy to determine the mineral composition of the arid land dust source regions of the Earth to advance our knowledge of the radiative forcing effect of these aerosols. Mineral dust emitted into the atmosphere under high wind conditions is an element of the Earth system with many impacts to the Earth's energy balance, atmosphere, surface, and oceans. The Earth's mineral dust cycle with source, transport, and deposition phases are studied with advanced Earth System Models. Because the chemical composition, optical and surface properties of soil particles vary strongly with the mineral composition of the source, these models require knowledge of surface soil mineral dust source composition to accurately understand dust impacts on the Earth system now and in the future. At present, compositional knowledge of the Earth's mineral dust source regions from existing data sets is uncertain as a result of limited measurements. EMIT will use spectroscopically-derived surface mineral composition to update the prescribed boundary conditions for state-of-the-art Earth System Models. The EMIT-initialized models will be used to investigate the impact of direct radiative forcing in the Earth system that depends strongly on the composition of the mineral dust aerosols emitted into the atmosphere. These new measurements and related products will be used to address the EMIT science objectives and made available to the science community for additional investigations. An overview of the EMIT science, development, and mission is presented in this paper.The authors gratefully acknowledge NASA and the Earth System Science Pathfinder program office as well as the broad set of contributors to the EMIT mission. A portion of this work was carried out at the Jet Propulsion Laboratory / California Institute of Technology, Pasadena, California, undercontract with the National Aeronautics and Space Administration.Peer ReviewedPostprint (author's final draft
    corecore