11 research outputs found

    A novel deep-learning based weighted feature fusion architecture for precise classification of pressure injury

    Get PDF
    Introduction: Precise classification has an important role in treatment of pressure injury (PI), while current machine-learning or deeplearning based methods of PI classification remain low accuracy.Methods: In this study, we developed a deeplearning based weighted feature fusion architecture for fine-grained classification, which combines a top-down and bottom-up pathway to fuse high-level semantic information and low-level detail representation. We validated it in our established database that consist of 1,519 images from multi-center clinical cohorts. ResNeXt was set as the backbone network.Results: We increased the accuracy of stage 3 PI from 60.3% to 76.2% by adding weighted feature pyramid network (wFPN). The accuracy for stage 1, 2, 4 PI were 0.870, 0.788, and 0.845 respectively. We found the overall accuracy, precision, recall, and F1-score of our network were 0.815, 0.808, 0.816, and 0.811 respectively. The area under the receiver operating characteristic curve was 0.940.Conclusions: Compared with current reported study, our network significantly increased the overall accuracy from 75% to 81.5% and showed great performance in predicting each stage. Upon further validation, our study will pave the path to the clinical application of our network in PI management

    Phenotypic Characterization and Gene Mapping of a Spiral Leaf and Dwarf (<i>sld</i>) Mutant from Tetraploid Common Tobacco (<i>Nicotiana tabacum</i> L.)

    No full text
    Leaf morphology and plant height are two agronomic traits closely related to tobacco (Nicotiana tabacum L.) yield and quality. The study of leaf morphology and plant stature mutants will greatly contribute to the fields of plant architecture breeding and developmental biology. Here, we report the characterization of a spiral leaf and dwarf (sld) mutant identified from an ethylmethane sulfonate (EMS)-induced common tobacco population. The sld mutant displayed the phenotype of wrinkled, spiral, and miniature leaves, with the growth point as the central axis and plant dwarfing with shortened internodes. The inheritance pattern of the sld mutant phenotype was manipulated by a recessive nuclear monogene, which was linked to six tobacco simple sequence repeat (SSR) markers from linkage group 5 via gene mapping. Utilizing an F2 population, the sld mutant gene the sld mutant gene was located between the co-segregated markers PT51778, PT54913, and the marker PT61414, with an equal genetic distance of 0.16 cM. Taking advantage of a BC1F1 population, the markers PT51778, PT54913, the sld gene, and the marker PT61414 demonstrated co-segregation, located between the markers PT40040 and PT60933, respectively, with a genetic distance of 1.37 cM and 6.32 cM, respectively. These findings will be helpful in cloning the sld gene and in the further characterization of the regulatory genes controlling the spiral and dwarfing phenotypes in tobacco

    Phase-Engineered VO<sub>2</sub> Metal Nanofiber Enables a Metal–Insulator Transition for Bidirectional Thermal Reallocation

    No full text
    Phase change materials (PCMs) are appealing for their fascinating capability of thermal reallocation, assisting widely in many areas of human productivity and life. However, it has remained a significant challenge to attain shape stability, temperature resistance, and microscale continuity in PCMs while maintaining sufficient phase change performance. Here we report a sol epitaxial fabrication strategy to create metal–insulator transition nanofibers (MIT-NFs) composed of monoclinic vanadium dioxide. The MIT-NFs are further assembled into self-standing two-dimensional membranes and three-dimensional aerogels with structural robustness. The resulting series of metal–insulator transition materials exhibits the integrated features of solid–solid phase change properties, shape stability, and thermal reallocation properties. The integral ceramic characteristic also provides the MIT-NFs with surface stiffness (54 GPa), temperature resistance (−196° to 330 °C), and thermal insulator properties. The successful fabrication of these captivating MIT materials may provide new perspectives for next-generation, shape-stable, and self-standing PCMs

    Propolis Ameliorates Alcohol-Induced Depressive Symptoms in C57BL/6J Mice by Regulating Intestinal Mucosal Barrier Function and Inflammatory Reaction

    No full text
    Accumulating evidence points to a critical role of the brain gut axis as an important paradigm for many central nervous system diseases. Recent studies suggest that propolis has obvious neuroprotective properties and functionality in regulating intestinal bacteria flora, hinting at a potential key effect at both terminals of this axis regulation. However, currently no clear evidence confirms the effects of propolis on alcohol-induced depression. Here, we establish an alcoholic depression model with C57BL/6J mice and demonstrate that treatment with propolis protects against alcohol-induced depressive symptoms by behavioral tests. In addition, propolis attenuates the injury of nerve cells in the hippocampal region and restores the serum levels of brain-derived neurotrophic factor (BDNF) and dopamine (DA) in mice with alcohol-induced depression. Pathology and biotin tracer assays show that propolis repairs the intestinal leakage caused by alcohol. Additionally, propolis treatment increases the expression levels of intestinal intercellular tight junctions&rsquo; (TJs&rsquo;) structural proteins Claudin-1, Occludin and zona occludens-1 (ZO-1), as well as the activation state of the liver kinase B1/AMP-activated protein kinase (LKB1/AMPK) signaling pathway, which is closely related to the intestinal permeability. Furthermore, propolis can reduce the levels of pro-inflammatory, lipopolysaccharide (LPS) and fatty-acid-binding protein 2 (FABP2), suggesting the significance of the inflammatory response in alcoholic depression. Collectively, our findings indicate that propolis exerted an improving effect on alcohol-induced depressive symptoms by ameliorating brain gut dysfunction

    Multi-omics analyses of CD276 in pan-cancer reveals its clinical prognostic value in glioblastoma and other major cancer types

    No full text
    Abstract Background CD276 (also known as B7-H3) is one of the most important immune checkpoints of the CD28 and B7 superfamily, and its abnormal expression is closely associated with various types of cancer. It has been shown that CD276 is able to inhibit the function of T cells, and that this gene may potentially be a promising immunotherapy target for different types of cancer. Methods Since few systematic studies have been published on the role of CD276 in cancer to date, the present study has employed single-cell sequencing and bioinformatics methods to analyze the expression patterns, clinical significance, prognostic value, epigenetic alterations, DNA methylation level, tumor immune cell infiltration and immune functions of CD276 in different types of cancer. In order to analyze the potential underlying mechanism of CD276 in glioblastoma (GBM) to assess its prognostic value, the LinkedOmics database was used to explore the biological function and co-expression pattern of CD276 in GBM, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed. In addition, a simple validation of the above analyses was performed using reverse transcription-quantitative (RT-q)PCR assay. Results The results revealed that CD276 was highly expressed, and was often associated with poorer survival and prognosis, in the majority of different types of cancer. In addition, CD276 expression was found to be closely associated with T cell infiltration, immune checkpoint genes and immunoregulatory interactions between lymphoid and a non-lymphoid cell. It was also shown that the CD276 expression network exerts a wide influence on the immune activation of GBM. The expression of CD276 was found to be positively correlated with neutrophil-mediated immunity, although it was negatively correlated with the level of neurotransmitters, neurotransmitter transport and the regulation of neuropeptide signaling pathways in GBM. It is noteworthy that CD276 expression was found to be significantly higher in GBM compared with normal controls according to the RT-qPCR analysis, and the co-expression network, biological function and chemotherapeutic drug sensitivity of CD276 in GBM were further explored. In conclusion, the findings of the present study have revealed that CD276 is strongly expressed and associated with poor prognosis in most types of cancer, including GBM, and its expression is strongly associated with T-cell infiltration, immune checkpoint genes, and immunomodulatory interactions between lymphocytes and non-lymphoid cells. Conclusions Taken together, based on our systematic analysis, our findings have revealed important roles for CD276 in different types of cancers, especially GBM, and CD276 may potentially serve as a biomarker for cancer

    Identification of stably expressed QTL for resistance to black shank disease in tobacco (Nicotiana tabacum L.) line Beinhart 1000-1

    No full text
    Cigar line Beinhart 1000-1 has effective durable resistance to black shank (BS) and is considered one of the most resistant sources in tobacco (Nicotiana tabacum L.). To investigate the inheritance and identification of stable quantitative trait loci (QTL) for BS response, F2, BC1F2 individuals and BC1F2:3 lines were produced from a cross between Beinhart 1000-1 and Xiaohuangjin 1025. Two major quantitative trait loci (M-QTL) named qBS7 and qBS17 were repeatedly detected under different conditions. QTL qBS7 was mapped to the region between PT30174 and PT60621 and explained 17.40%–25.60% of the phenotypic variance under different conditions. The other QTL qBS17 in interval PT61564–PT61538 of linkage group 17 was detected in a BC1F2 population in the field and in BC1F2:3 in both the field and at the seedling stage, explaining 6.90% to 11.60% of the phenotypic variance. The results improve our understanding of the inheritance of resistance to BS and provide information that can be used in marker-assisted breeding. Keywords: Phytophthora nicotianae, Quantitative trait locus, Plant disease resistance, Simple sequence repeat

    Attenuated Salmonella carrying siRNA-PD-L1 and radiation combinatorial therapy induces tumor regression on HCC through T cell-mediated immuno-enhancement

    No full text
    Abstract Hepatocellular carcinoma (HCC), the most prevalent type of aggressive liver cancer, accounts for the majority of liver cancer diagnoses and fatalities. Despite recent advancements in HCC treatment, it remains one of the deadliest cancers. Radiation therapy (RT) is among the locoregional therapy modalities employed to treat unresectable or medically inoperable HCC. However, radioresistance poses a significant challenge. It has been demonstrated that RT induced the upregulation of programmed death ligand 1 (PD-L1) on tumor cells, which may affect response to PD-1-based immunotherapy, providing a rationale for combining PD-1/PD-L1 inhibitors with radiation. Here, we utilized attenuated Salmonella as a carrier to explore whether attenuated Salmonella carrying siRNA-PD-L1 could effectively enhance the antitumor effect of radiotherapy on HCC-bearing mice. Our results showed that a combination of siRNA-PD-L1 and radiotherapy had a synergistic antitumor effect by inhibiting the expression of PD-L1 induced by radiation therapy. Mechanistic insights indicated that the combination treatment significantly suppressed tumor cell proliferation, promoted cell apoptosis, and stimulated immune cell infiltration and activation in tumor tissues. Additionally, the combination treatment increased the ratios of CD4+ T, CD8+ T, and NK cells from the spleen in tumor-bearing mice. This study presents a novel therapeutic strategy for HCC treatment, especially for patients with RT resistance
    corecore