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Introduction: Precise classification has an important role in treatment of pressure
injury (PI), while current machine-learning or deeplearning based methods of PI
classification remain low accuracy.

Methods: In this study, we developed a deeplearning based weighted feature
fusion architecture for fine-grained classification, which combines a top-down
and bottom-up pathway to fuse high-level semantic information and low-level
detail representation. We validated it in our established database that consist of
1,519 images from multi-center clinical cohorts. ResNeXt was set as the
backbone network.

Results: We increased the accuracy of stage 3 PI from 60.3% to 76.2% by adding
weighted feature pyramid network (wFPN). The accuracy for stage 1, 2, 4 PI were
0.870, 0.788, and0.845 respectively.We found the overall accuracy, precision, recall,
and F1-score of our network were 0.815, 0.808, 0.816, and 0.811 respectively. The
area under the receiver operating characteristic curve was 0.940.

Conclusions: Compared with current reported study, our network significantly
increased the overall accuracy from 75% to 81.5% and showed great performance
in predicting each stage. Upon further validation, our study will pave the path to
the clinical application of our network in PI management.
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1 Introduction

Pressure injury (PI) refers to localized damage to the skin and soft tissue located over the
elevations and is commonly found in bedridden patients. PI has a predilection for occurring
in the skin and subcutaneous tissues above bony prominences, including the sacrococcygeal
region and the heel region (Hajhosseini et al., 2020). In the United States, PI affects 3 million
people each year, whereas in Europe, the incidence of hospital stress injury is approximately
8.3%–23% in different countries (Mervis and Phillips, 2019). With the prevalence of
concomitant PI increasing year by year in the past decade, PI has become a global
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health problem. PI occurring during hospitalization is referred to as
hospital acquired pressure injury (HAPI), and HAPI increases not
only care time and treatment costs, but also family and social
burdens (Gaspar et al., 2019). In addition, studies have shown
that about 28% of stress injuries occur in home patients, while
nearly 25% of them die from infections caused by PI. Researchers
have shown that tissue damage in areas of intact skin penetrates
from the deep layer to the surface within 48 h, after 7 h to 10 days,
further deteriorating to necrosis. Therefore, early detection and
timely prevention are effective ways to reduce the incidence of PI(4).

Notably, based on the 4-stage classification pf PI, the
2019 guideline issued by the National Pressure Ulcer Advisory
Panel (NPUAP) further proposed several concepts such as
pressure injury of unclear stage, deep tissue pressure injury,
extension of pressure injury, mucosal pressure injury, and
equipment related pressure injury, which extremely complex the
staging and grading of PI (Munoz et al., 2020). First, its diagnosis in
the clinical practice is highly dependent on the subjective judgment
of caregivers, which is not conducive to a homogenous management
in the clinic (Mervis and Phillips, 2019; Kottner et al., 2020; Munoz
et al., 2022). Second, in post-charged patients, the care or family
mostly has not received systematic medical training and it is difficult
to make precise judgment about the progress and staging of PI,
which on the one hand is prone to aggravating the condition and
delaying diagnosis, and on the other hand, it is prone to increase the
demand of patients’ hospitalization, resulting in the waste of medical
resources. Therefore, there is a great need to construct more
intelligent and precise PI grade quantification strategies, develop
PI precision staging platforms, and provide theoretical guidance and
therapeutic evidence for the care of PI.

To date, with the rapid advances in artificial intelligence, mining
and parsing of medical images have entered a new stage. Digital
quantitative high-throughput analysis is achieved by applying a large
number of automated data characterization algorithms to transform
image data of regions of interest (ROI) into feature space data with high
resolution (Esteva et al., 2019). Automated analysis of PI images from
patients in hospital or post-charged using artificial intelligence and
giving corresponding treatment opinions to patients and families based
on the results can greatly shorten treatment processes and save medical
costs. We notice that there are parts of research teams have done some
inspiring work in this area (Alderden et al., 2018; Jiang et al., 2020; Cai
et al., 2021; Song et al., 2021; Jiang et al., 2022; Chen et al., 2023). The
current studies primarily revolve around two aspects: (Hajhosseini et al.,
2020): Creating a pressure injury dataset: they select diagnosed records
of patients with pressure injuries from the cases of hospitalized patients
in a medical center over the past few years. Early-stage images of the
ulcer areas are obtained, and the core regions are selected, cropped, and
resized to specific sizes. These prepared images are then handed over to
professional doctors and nurses to classify and label them according to
an international standard for the classification of pressure injuries.
(Mervis and Phillips, 2019). Testing on the dataset with convolutional
neural networks: the prepared dataset is divided into certain
proportions and used to train on the state-of-art CNN architectures
in order to find the network with the best classification performance for
practical application.

The above-mentioned work does provide some assistance in PI care
tasks. However, the scale of the PI dataset varies depending on the
researchers’ data acquisition channels. From our research findings, the

number of images ranges from a hundred to two thousand. If a multi-
classification task is performed on a small dataset, the reliability and
generalizability of the training results may be compromised. On the
other hand, different from conventional classification tasks, subcategory
images of pressure injuries exhibit closer similarities because the
damaged areas all belong to the skin tissue, sharing many common
features, which is a significant factor limiting the improvement of
classification network accuracy (Ding et al., 2021). For instance,
distinguishing stage 3 PI from others, both of which involve skin
breakdown and exposure of the dermis, requires more detailed texture
features for auxiliary judgment such as whether fat and deep tissues are
exposed and whether there is granulation tissue, necrosis, or eschar. In
the design of CNNs, deeper networks have larger receptive fields,
allowing them to learn more semantic features. However, this
inevitably leads to the loss of detailed information about small
discriminative regions and these lower-level details such as texture
patterns, colors, and edge connections, which are crucial for the
classification of pressure injuries.

To address the above-mentioned issues, the main contributions
of this study can be summarized as follows:

• Firstly, we established a large scale dataset consisting of
1,519 pressure injury images from multi-center cohorts
which were classified by professional doctors and nurses
according to NPUAP standards.

• Secondly, we test the performance of the latest state-of-art
CNN architectures on our self-built dataset and compare the
classification results using common evaluation metrics.

• Finally, based on the model with the highest classification
accuracy, we propose a novel weighted feature fusion
architecture, which combines a top-down pathway and a
bottom-up pathway to fuse learned high-level semantic and
low-level detailed representations for fine-grained
classification. The dule-path structure fuses high-level
semantic information and low-level detail representation,
which can better differentiate pressure ulcer images with
closer similarities. Meanwhile, the introduction of weights
before fusion will correct the prediction results according to
the importance of different scale feature layers, and finally
achieve more accurate pressure ulcer classification results.

2 Methods

2.1 Dataset and exclusion

Our dataset consisted of retrospectively collected data that formed a
convenience series. It contains 3 in-house datasets and 1 publicly
available dataset. In-house datasets (Pressure Injury Image Dataset
of Wuhan University Renmin Hospital, whu-PIID) were collected
from 3 different institutes: Wuhan University Renmin Hospital
[containing 363 images], Union Hospital Tongji Medical College
Huazhong University of Science and Technology [containing
80 images], and Zhongshan Hospital Xiamen University [containing
76 images]. Public dataset (containing 1,091 image) were collected from
the Pressure Injury Images Dataset (PIID) (Ay et al., 2022). The
collected images were identified by experienced doctors and nurses
(>10 years of experience).
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After screening, patients with unstagable PI, suspected deep
tissue damage, and mucosal PI were excluded. Their conditions were
identified by experienced doctors and nurses. Finally, 291 images
from Wuhan University Renmin Hospital, 72 images from Union
Hospital Tongji Medical College Huazhong University of Science
and Technology, 65 images from Zhongshan Hospital Xiamen
University, and 1,091 images from PIID (a total of 1,519)
were included.

2.2 Weighted feature pyramid network

In this section, we will introduce the Weighted Feature Pyramid
Network (wFPN) designed for pressure injury classification
(Figure 1). We establish a dual-path feature fusion structure
which combines top-down as well as bottom-up pathways and
add an additional adaptive trainable weight to each input feature
layer so that the network can adjust the importance of different
input features by training.

1) Overview: The image input goes through the CNN backbones
and obtains feature hierarchy {B1, B2, B3, . . ., B6} through a
series of convolutional blocks, where n represents the number

of convolutional blocks. Typical image classification methods
directly take the last feature map and connect it to a fully
connected layer for classification. While the last feature map
contains strong semantic information, it is weak in detailed
representation of image features, which may result in
unsatisfactory performance in fine-grained tasks where the
differences between categories are small, such as pressure
injury classification.

To address this issue, the FPN (Feature Pyramid Network)
structure combines multi-scale feature maps through a top-down
pathway, mapping high-level semantic information to low-level
features and generating l corresponding feature hierarchy {Fn−l+1,
Fn−l+2, . . ., Fn−1, Fn}. Additionally, PANet (Path Aggregation
Network) adds a top-up pathway to generate feature hierarchy
{Pn−l+1, Pn−l+2, . . ., Pn−1, Pn} to enhance the localization
information of high level feature maps.

We further enhance the dual-path feature fusion network by
introducing adaptive and learnable weight parameters for each
feature map. We believe that the contribution of each feature
map to the fused result should not be equally distributed when
fusing features of different scales. Therefore, it is necessary to add the
weight parameters for reaching more optimal results.

FIGURE 1
Illustration of our network. We uses ResNeXt as the backbone network and wFPN as the feature fusion network. In this figure, wFPN contains top-
down (A) and bottom-up (B)weighted feature fusion pathways as shown in the lower dotted box, and the details were presented in the upper dotted box.
The final result is obtained by weighting the outputs of the 3 classifiers (C).
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2) Weighted Feature Fusion: Before fusing features, it is
necessary to adjust the feature maps of different scales to
the same resolution through methods such as up-sampling or
down-sampling. Common weighting methods include
softmax-based and fast normalization-based methods. Since
softmax-based method involves exponential computations,
which introduces additional computational complexity, we
adopt the fast normalization method for feature fusion. The
calculations are shown in the formula below:

O � ∑
i

wi

∑jwj + ϵ · Ii (1)

where Ii represents the feature layer before fusion, wi is a
nonnegative value representing the weights before normalization,
and ϵ � 0.0001 is a small value to prevent division by zero.

3) Dual Pathway Hierarchy: We first select the last 3 layers {B4,
B5, B6} and put them into the top-down pathway with weights.
The process of obtaining Fn from feature map Bn can
be shown as:

Fn � Conv3 w1 × Conv1 Bn( ) + w2 × Resize Fn+1( )( )
w1 + w2 + ϵ , (2)

where conv1() represents a 1 × 1 convolutional layer that adjusts the
channel of different input features to the same size, conv3()
represents a 3 × 3 convolutional layer that smooths the feature
layer after adding the two feature layers. Resize() represents up-
sampling to match the resolution of the fused feature layers, w1 and
w2 are the weights assigned to the feature layer, controlling its
contribution to the final output.

In particular, since the last feature map B6 does not have upper
layers to be fused with, we perform global average pooling and max
pooling on it to obtain the output for the next stage:

F6 � Conv1 AvgPool B6( ) +MaxPool B6( )( ), (3)
where AvgPool() represents global average pooling, MaxPool()
represents global max pooling, and conv1() is used to adjust the
channel size.

After the top-down pathway, we add a Convolutional Block
Attention Module (CBAM) (Wang et al., 2022), which is an
attention mechanism module that combines both channel and
spatial attention to enhance the network’s perception of
important regions in the image. In this module, the input feature
map F first goes through the channel attention module and then the
spatial attention module to obtain the refined final output feature.
The process of channel attention module generating the feature map
F′ can be represented as:

F′ � Mc F( ) ⊗ F (4)
Mc F( ) � σ MLP AvgPool F( )( ) +MLP MaxPool F( )( )( ), (5)

where ⊗ represents element-wise multiplication, and broadcasting is
used for dimension transformation and matching.MLP() represents
a multi-layer perceptron that generates a 1D channel attention
feature map, and σ represents the sigmoid function. The feature
map F′ goes through the spatial attention module to generate the
final output F″:

F″ � Ms F′( ) ⊗ F′ (6)
Ms F′( ) � σ f7×7 AvgPool F′( ); MaxPool F′( )( )( ), (7)

where f7×7 represents a convolution operation with a kernel size of
7, used to generate the 2D spatial attention feature map.

After the CBAM module, we also add a bottom-up pathway.
Since the channel sizes of previous layers have been adjusted to 256,
a 1 × 1 convolution have been removed. The process of obtaining Pn

from feature map F″
n can be represented by the following equation:

Pn �
Conv3 w1 × F″

n + w2 × Resize Pn−1( )( )
w1 + w2 + ϵ , (8)

here Resize() represents down-sampling.

4) Classifier: The outputs {out4, out5, out6} are obtained from the
classifiers after {P4, P5, P6} passing through a classifier that
includes a global average pooling layer and two fully connected
layers. The final prediction result is obtained by averaging the
weighted sum of the three outputs:

pred � ∑kwk × outk
ϵ +∑kwk

(9)

2.3 Performance evaluation metrics

In order to objectively evaluate the multi-classification
performance of various models on the pressure injury dataset, we
employ parameters such as Confusion Matrix, Precision, Recall,
Accuracy, and F1-score as evaluationmetrics. The ConfusionMatrix
is a numerical table that summarizes the records in the dataset
according to the true class and the predicted class of the classification
model, providing an intuitive view of the classification results of the
deep learning model for each class. Based on the Confusion Matrix,
we can calculate true positive (TP), true negative (TN), false positive
(FP), and false negative (FN). TP represents the number of positive
samples correctly identified by the classifier, TN represents the
number of negative samples correctly identified by the classifier,
FP represents the number of negative samples incorrectly identified
as positive, and FN represents the number of positive samples
missed by the classifier. Using these four metrics, we can
calculate Precision, Recall, Accuracy, and F1-score as shown below:

precision � TP

TP + FP
(10)

recall � TP

TP + FN
(11)

accuracy � TP + TN

TP + FN + TN + FP
(12)

F1−score � 2 × precision × recall

precision + recall
(13)

Since this study involves multi-classification tasks, we use the
macro F1-score to determine whether the images are evenly
classified. Its calculation method is:

macro − F1 � 1
n
∑
n

i�1
Fi (14)
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where Fi represents F1-score of each category.

2.4 Experimental platform and details

The platform for this study is as follows: CPU: Intel Xeon E5-
1660 (3.7 GHz); GPU: NVIDIA GeForce RTX 3060 (12 GB); DDR3:
64GB; Python 3.8.13, CUDA 11.3.

Before this experiment, we fix the random seed and randomly
divide the dataset into a training set and a validation set in an 8:
2 ratio. The total number of images at each stage and their
distribution for training and validation are shown in Table 1.
The mean and standard deviation of all images in the dataset are
calculated to be [0.537, 0.424, 0.393] and [0.523, 0.416, 0.376]
respectively. During the image preprocessing stage, the data is
normalized using these values.

For network training, the AdamW (Loshchilov and Hutter,
2017) optimizer was used for network optimization. The initial
learning rate and weight decay are set to be 0.0002 and
0.0001 respectively. The learning rate is dynamically updated
using the cosine annealing function. The input image size is
224 × 224, and the batch size is set to 16.

3 Results

3.1 Patient characteristics

We collected a total of 1,519 patients in this study, 1,216 as a
train set and 303 as a validation set. The details of characteristics of
patients in whu-PIID were presented in Table 2. Figure 2 showed the
representative image of different stage of PI and the inclusion
flowchart of patients among different cohorts.

3.2 Algorithm performance

In this study, we used five state-of-the-art pre-trained CNNmodels
to perform pressure ulcer classification tasks. Due to the requirement
for detection speed in practical applications of pressure ulcer
classification, we selected models with smaller sizes (such as small or
tiny versions) ormodels with fewer stacked layers. Themodels we chose
were ResNeXt50_32x4d (Xie et al., 2017), ConvNeXt-s (Liu et al., 2022),
EfficientNetV2-s (Tan and Le, 2019; Tan and Le, 2021), DenseNet161
(Huang et al., 2016), and Swin-Transformer-tiny (Liu et al., 2021a).
Additionally, we used resnext50_32x4d as the backbone and added our
own designed wFPN (weighted Feature Pyramid Network) as a
bottleneck for comparison experiment. We employed transfer
learning by loading pre-trained weights from the ImageNet database
into the backbone network and fine-tuning it on our own dataset to
obtain the final training results. The sizes of the pre-trained weights of
themodels and the accuracy obtained on the validation set are shown in
Table 3. Based on the evaluation metrics mentioned in Section 3.3, we
found the overall accuracy, precision, recall, and F1-score of our
networks were 0.815, 0.808, 0.816, and 0.811 respectively, indicating
our improved network had better performance than other five
networks (Table 4).

The receiver operating characteristic (ROC) curve can easily
reveal the recognition capability of a classifier at a certain threshold,
with the False Positive Rate (FPR) on the horizontal axis and the
True Positive Rate (TPR) on the vertical axis. The closer the curve is
to the upper-left corner, the higher the sensitivity and the lower the
false positive rate, indicating better classification performance of the
network. The area under curve (AUC) of ROC curve considers the
classifier’s ability to classify positive and negative examples and
provides a reasonable evaluation even in cases of imbalanced
samples. We observed the highest AUC in our improved network
(AUC = 0.940) among six networks (ResNeXt50: 0.919, ConvNeXt-
s: 0.938, EfficientNetV2-s: 0.928, DenseNet161: 0.898, Swin-
Transformer-tiny: 0.892) (Figure 3).

Based on the results obtained from each network’s validation, we
plotted the normalized confusion matrix, with the true labels on the
horizontal axis and the predicted labels on the vertical axis
(Figure 4). From the graph, we can see that ResNeXt50,
EfficientNetV2-s, ConvNeXt-s, and DenseNet161 have a higher
misdiagnosis rate for stage 3 (ResNeXt50: 60.3%, EfficientNetV2-
s: 57.1%, ConvNeXt-s: 68.3%, and DenseNet161: 55.6%), which is
the main factor limiting their overall accuracy. Swin Transformer-
tiny shows relatively average performance across all categories, but
the accuracy for all four stages is generally low in the 70%–80%
range. On the other hand, ResNeXt50 + wFPN achieves a
classification accuracy of over 75% for each stage, with

TABLE 1 The total number of images in training and validation set.

Train Validation Total

Stage 1 308 77 385

Stage 2 419 104 523

Stage 3 255 63 318

Stage 4 235 58 293

Total 1,216 303 1,519

TABLE 2 Characteristics of patients in whu-PIID.

Whu-PIID set

N 100%

Sex

Male 271 63.3

Female 155 36.2

Unknown 2 0.5

Age

<50 192 44.9

>50 234 54.6

Unknown 2 0.5

Stage

1 155 36.2

2 210 49.1

3 43 10.0

4 20 4.7
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particularly outstanding performance in stage 1 (87%) and stage 4
(84.5%), which contributes to its overall superior performance
compared to the other five networks.

4 Discussion

To date, PI has become a global health problem. The key to the
treatment of PI is early diagnosis, classification and prevention,

which requires a concerted effort both inside and outside the
hospital. Compared with HAPI, more serious PI often occurs
around us. Early identification of them can effectively block the
disease process and improve the survival of patients. Herein, we
developed a novel classification method for PI based on deep
learning in a multi-center cohorts. Our model increased the
overall accuracy from 75% to 81.5%, comparing with Ay et al.
work (Ay et al., 2022). We also increased the accuracy for predicting

FIGURE 2
The flowchart of the present study. Left panel: Representative image of pressure injury from stage 1–4. Right panel: The inclusion and exclusion
standard of our study. After screening, 1,091 images from PIID, 291 patients from Wuhan University Renmin Hospital, 72 patients from Union Hospital of
Wuhan, and 65 patients from Zhongshan Hospital of Xiamen University were enrolled in.

TABLE 3 The sizes of the pre-trained weights of each models and the
accuracy obtained on the validation set.

Network Model size (MB) Accuracy (%)

ResNeXt50 + wFPN 95.7 81.5

ResNeXt50 95.7 79.5

EfficientNetV2-s 82.6 78.8

ConvNeXt-s 191 78.1

DenseNet161 110 76.2

Swin Transformer-tiny 109 75.5

TABLE 4 The overall accuracy, precision, recall, and F1-score of each
models.

Network Accuracy Precision Recall F1-
score

ResNeXt50 + wFPN 0.815 0.808 0.816 0.811

ResNeXt50 0.795 0.784 0.790 0.782

EfficientNetV2-s 0.788 0.781 0.775 0.776

ConvNeXt-s 0.781 0.771 0.777 0.773

DenseNet161 0.762 0.751 0.763 0.751

Swin Transformer-
tiny

0.755 0.761 0.747 0.753
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stage 3 PI from 60.3% to 76.2% through adding wFPN. This method
holds promise for precise diagnosis and classification of PI to achieve
homogenous management within hospitals and provide medical
advice to post-charged patients, and will greatly improve the life
quality of patients and save medical resources.

Actually, we have noticed a number of groups that have
undertaken some inspiring work in the early diagnosis field of
PI. For instance, Cai et al. (Jiang et al., 2020; Cai et al., 2021;
Jiang et al., 2022; Chen et al., 2023) developed several machine-
learning based methods and highlighted the application of infrared
thermography detection in PI diagnosis. Song et al. (Song et al.,
2021) also established a data-driven, generalizable pressure injury
prediction model in a relatively large cohort. These works strongly
promote the development of PI prediction. However, compared with
early diagnosis, precise classification of PI faced with more
challenges. Different from the large number of quantified clinical
features as parameters for early diagnosis, PI classification depends
more on the learning and recognition of image features. Therefore,
there is a lack of related research. However, the importance of PI
precise classification is as important as early diagnosis. In particular,
higher degree PI commonly occurs in patients out of hospital, who
lack of professional medical knowledge. Thus, development of an
automatic classification model hold promise in inhibiting PI
progression and improving patients’ life quality.

Compared with machine-learning methods, neural network
based deep-learning showed greater capability in PI classification.
To date, Ay et al. (Ay et al., 2022) constructed PI classification
network through deep learning. However, their deep-learning based
model can only achieve an accuracy of ~75%. We notice that their
model showed remarkably lower accuracy in distinguishing stage
3 from others, which is also challenging in clinical practice. In fact,
the information provided by flat images is limited, and they cannot
provide information of three-dimensional level such as temperature
and depth. Adding methods such as skin temperature detection will
make PI prediction more complex and difficult to perform at home,
which is not in line with our original intention. Therefore, we hope
to get more information from the images to make up for the lack of
three-dimensional information. Feature fusion is the process of
taking features extracted from an image and combining them
into one feature that is more discriminating than the input
features (Rahaman et al., 2021; Chen et al., 2022; Zhang et al.,
2023). In the use of CNNs for extracting image features, it is
generally believed that the early layers of the network can
capture low-level features of the image, while deeper layers can
get high-level features. Low-level features have higher resolution and
contain more positional and detailed information, but they have
lower semantic meaning and more noise due to fewer convolutions.
High-level features, on the other hand, have stronger semantic

FIGURE 3
ROC curve for each network. (A) ResNeXt50+wFPN: the AUC for average, stage 1, stage 2, stage 3, and stage 4 were 0.940, 0.964, 0.913, 0.913, and
0.964, respectively. (B)DenseNet161: the AUC for average, stage 1, stage 2, stage 3, and stage 4 were 0.898, 0.965, 0.831, 0.850, and 0.939, respectively.
(C) EfficientNetV2-s: the AUC for average, stage 1, stage 2, stage 3, and stage 4 were 0.928, 0.972, 0.880, 0.895, and 0.959, respectively. (D) ResNeXt50:
the AUC for average, stage 1, stage 2, stage 3, and stage 4 were 0.919, 0.972, 0.835, 0.900, and 0.960, respectively. (E) ConvNeXt-s: the AUC for
average, stage 1, stage 2, stage 3, and stage 4 were 0.938, 0.967, 0.901, 0.921, and 0.955, respectively. (F) Swin-Transformer-tiny: the AUC for average,
stage 1, stage 2, stage 3, and stage 4 were 0.892, 0.937, 0.815, 0.853, and 0.959, respectively.
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information but lower resolution and less ability to perceive details.
The fusion of multi-scale features aims to better utilize the different
level of features and model them together. Early approaches to
feature fusion include feature concatenation, feature summation
(Lin et al., 2017), skip connections (Liu et al., 2018a), deconvolution
(Fu et al., 2017), and multi-scale model (Li and Zhou, 2017).
Thereafter, various complex feature fusion networks have
emerged. TFN and LFN (Zadeh et al., 2017; Liu et al., 2018b)
perform feature fusion by taking the outer product of different
features, but they are prone to the problem of dimension explosion,
and the fusion effect is not ideal. Sahu et al. (Sahu and Vechtomova,
2019) propose using autoencoder and generating adversarial
networks (GAN) for fusion, but this approach reduces the
dimensionality of the original features, leading to the loss of
some features. Chaib et al. (Chaib et al., 2017) introduce
discriminant correlation analysis (DCA) into canonical
correlation analysis (CCA) to maximize the correlation between
corresponding features in two feature sets while maximizing the
differences between different classes. This strategy has advantage of
fusing features by calculating the transformations between two input
features, but ignores the relationships between class structures in the
dataset. Based on the idea of weighted summation, a lot of study
introduce attention mechanisms (Vielzeuf et al., 2018; Liu et al.,

2019; Wu et al., 2021), self-attention mechanisms (Liu et al., 2021b),
and gating mechanisms (Pu et al., 2020) into feature layers to reflect
the different contributions of feature layers with different input
resolutions to the final result. In view of the inconsistent quality,
complex information, and obvious individual differences of images,
our own designed wFPN showed significantly better performance
than previous deep-learning models. Through our models, we first
increase the overall accuracy from 75% to 81.5%, compared with Ay
et al. Work (Ay et al., 2022). Then, we increased the accuracy for
predicting stage 3 PI from 60.3% to 76.2% through adding wFPN.
After further validation, our developed PI classification model holds
promise in achieving clinical translation.

The great clinical application is another strength of our study.
We collected 1,519 images from multi-center cohorts, including
different hospitals, race, and shooting conditions. Through this
database, our model provided a relatively accurate and objective
classification results, which is helpful for unexperienced nurses to
determine the condition of patients. This is also conducive to the
homogeneous management of patients. Besides, it provides a
convenient and quick way for family members to learn about the
condition of PI in patients. As well known, severe PI are more likely
to occur outside the hospital because family members or caregivers
mostly lack professional medical knowledge and training. Our study

FIGURE 4
Confusion matrix for each network. (A) ResNeXt50+wFPN: the AUC for predicting stage 1, stage 2, stage 3, and stage 4 were 0.87, 0.788, 0.762, and
0.845, respectively. (B) DenseNet161: the AUC for predicting stage 1, stage 2, stage 3, and stage 4 were 0.844, 0.74, 0.556, and 0.914, respectively. (C)
EfficientNetV2-s: the AUC for predicting stage 1, stage 2, stage 3, and stage 4 were 0.883, 0.837, 0.571, and 0.81, respectively. (D) ResNeXt50: the AUC for
predicting stage 1, stage 2, stage 3, and stage 4 were 0.922, 0.788, 0.603, and 0.845, respectively. (E) ConvNeXt-s: the AUC for predicting stage 1,
stage 2, stage 3, and stage 4 were 0.844, 0.788, 0.683, and 0.793, respectively. (F) Swin-Transformer-tiny: the AUC for predicting stage 1, stage 2, stage 3,
and stage 4 were 0.753, 0.798, 0.73, and 0.707, respectively.
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provides a simple and convenient means to accurately judge and
stage pressure ulcers in patients with only an ordinary mobile phone.
When the PI is in the early stage, it can prompt the patient to early
prevention and treatment; when the situation of PI is more serious, it
can prompt patients to be hospitalized in time. This can greatly save
medical resources and relieve the pressure of hospitalization. More
importantly, this model has an extensive application prospect.
Although PI affects 3 million people each year, the cases that
really happened in large teaching hospitals or tertiary hospitals
are actually very limited, which restricts us from obtaining more
images to further optimize network. Our model pays more attention
to the use of patients outside the hospital, which means that we can
receive more feedback and images to further optimize our software.

However, there are still some limitations. First, we could not
quantify the depth of PI, leading to confusion between stage 3 PI and
other stages. Second, although we collected 1,519 images from
multi-center cohorts as train set, the patients in validation set
remained insufficient. This is also because it is not easy to obtain
PI images from hospitals after more attpention has been paid to the
prevention of PI. Therefore, future work needs to focus on: 1)
obtaining images from patients out of hospital; 2) expanding the
clinical sample and combining with other technical means,
including infrared thermography detection, to provide more
parameters for deep-learning network to achieve more accurate
classification of PI.

5 Conclusion

For the first time, we combined CNN and wFPN network to
construct the accurate classification model of PI in the multi-center
dataset of more than 1,500 samples. Compared with other current
networks, our model showed great capability in PI classification.
Upon further validation, our study will pave the path to the clinical
application of our network in PI management.
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