26 research outputs found

    HIP1–ALK, a Novel Fusion Protein Identified in Lung Adenocarcinoma

    Get PDF
    Introduction:The most common mechanism underlying overexpression and activation of anaplastic lymphoma kinase (ALK) in non–small-cell lung carcinoma could be attributed to the formation of a fusion protein. To date, five fusion partners of ALK have been reported, namely, echinoderm microtubule associated protein like 4, tropomyosin-related kinase-fused gene, kinesin family member 5B, kinesin light chain 1, and protein tyrosine phosphatase, nonreceptor type 3.Methods:In this article, we report a novel fusion gene huntingtin interacting protein 1 (HIP1)–ALK, which is conjoined between the huntingtin-interacting protein 1 gene HIP1 and ALK. Reverse-transcriptase polymerase chain reaction and immunohistochemical analysis were used to detect this fusion gene’s transcript and protein expression, respectively. We had amplified the full-length cDNA sequence of this novel fusion gene by using 5′-rapid amplification of cDNA ends. The causative genomic translocation t(2;7)(p23;q11.23) for generating this novel fusion gene was verified by using genomic sequencing.Results:The examined adenocarcinoma showed predominant acinar pattern, and ALK immunostaining was localized to the cytoplasm, with intense staining in the submembrane region. In break-apart, fluorescence in situ hybridization analysis for ALK, split of the 5′ and 3′ probe signals, and isolated 3′ signals were observed. Reverse-transcriptase polymerase chain reaction revealed that the tumor harbored a novel fusion transcript in which exon 21 of HIP1 was fused to exon 20 of ALK in-frame.Conclusion:The novel fusion gene and its protein HIP1–ALK harboring epsin N-terminal homology, coiled-coil, juxtamembrane, and kinase domains, which could play a role in carcinogenesis, could become diagnostic and therapeutic target of the lung adenocarcinoma and deserve a further study in the future

    Lung cancer in never-smoker Asian females is driven by oncogenic mutations, most often involving EGFR

    Get PDF
    The aim of this study was to determine the distribution of known oncogenic driver mutations in female never-smoker Asian patients with lung adenocarcinoma. We analyzed 214 mutations across 26 lung cancer-associated genes and three fusion genes using the MassARRAY® LungCarta Panel and the ALK, ROS1, and RET fusion assays in 198 consecutively resected lung adenocarcinomas from never-smoker females at a single institution. EGFR mutation, which was the most frequent driver gene mutation, was detected in 124 (63%) cases. Mutation of ALK, KRAS, PIK3CA, ERBB2, BRAF, ROS1, and RET genesoccurred in 7%, 4%, 2.5%, 1.5%, 1%, 1%, and 1% of cases, respectively. Thus, 79% of lung adenocarcinomas from never-smoker females harbored well-known oncogenic mutations. Mucinous adenocarcinomas tended to have a lower frequency of known driver gene mutations than other histologic subtypes. EGFR mutation was associated with older age and a predominantly acinar pattern, while ALK rearrangement was associated with younger age and a predominantly solid pattern. Lung cancer in never-smoker Asian females is a distinct entity, with the majority of these cancers developing from oncogenic mutations

    SEC31A-ALK Fusion Gene in Lung Adenocarcinoma

    No full text
    Anaplastic lymphoma kinase (ALK) fusion is a common mechanism underlying pathogenesis of non-small cell lung carcinoma (NSCLC) where these rearrangements represent important diagnostic and therapeutic targets. In this study, we found a new ALK fusion gene, SEC31A-ALK, in lung carcinoma from a 53-year-old Korean man. The conjoined region in the fusion transcript was generated by the fusion of SEC31A exon 21 and ALK exon 20 by genomic rearrangement, which contributed to generation of an intact, in-frame open reading frame. SEC31A-ALK encodes a predicted fusion protein of 1438 amino acids comprising the WD40 domain of SEC31A at the N-terminus and ALK kinase domain at the C-terminus. FISH studies suggested that SEC31A-ALK was generated by an unbalanced genomic rearrangement associated with loss of the 3'end of SEC31A. This is the first report of SEC31A-ALK fusion transcript in clinical NSCLC, which could be a novel diagnostic and therapeutic target for patients with NSCLC.status: publishe
    corecore