12 research outputs found

    The Case for Probe-class NASA Astrophysics Missions

    Get PDF
    Astrophysics spans an enormous range of questions on scales from individual planets to the entire cosmos. To address the richness of 21st century astrophysics requires a corresponding richness of telescopes spanning all bands and all messengers. Much scientific benefit comes from having the multi-wavelength capability available at the same time. Most of these bands,or measurement sensitivities, require space-based missions. Historically, NASA has addressed this need for breadth with a small number of flagship-class missions and a larger number of Explorer missions. While the Explorer program continues to flourish, there is a large gap between Explorers and strategic missions. A fortunate combination of new astrophysics technologies with new, high capacity, low dollar-per-kg to orbit launchers, and new satellite buses allow for cheaper missions with capabilities approaching strategic mission levels. NASA has recognized these developments by calling for Probe-class mission ideas for mission studies, spanning most of the electromagnetic spectrum from GeV gamma-rays to the far infrared, and the new messengers of neutrinos and ultra-high energy cosmic rays. The key insight from the Probes exercise is that order-of-magnitude advances in science performance metrics are possible across the board for initial total cost estimates in the range 500M-1B dollars

    A Realistic Roadmap to Formation Flying Space Interferometry

    Get PDF
    The ultimate astronomical observatory would be a formation flying space interferometer, combining sensitivity and stability with high angular resolution. The smallSat revolution offers a new and maturing prototyping platform for space interferometry and we put forward a realistic plan for achieving first stellar fringes in space by 2030

    Origins Space Telescope: baseline mission concept

    Get PDF
    The Origins Space Telescope will trace the history of our origins from the time dust and heavy elements permanently altered the cosmic landscape to present-day life. How did galaxies evolve from the earliest galactic systems to those found in the Universe today? How do habitable planets form? How common are life-bearing worlds? To answer these alluring questions, Origins will operate at mid- and far-infrared (IR) wavelengths and offer powerful spectroscopic instruments and sensitivity three orders of magnitude better than that of the Herschel Space Observatory, the largest telescope flown in space to date. We describe the baseline concept for Origins recommended to the 2020 US Decadal Survey in Astronomy and Astrophysics. The baseline design includes a 5.9-m diameter telescope cryocooled to 4.5 K and equipped with three scientific instruments. A mid-infrared instrument (Mid-Infrared Spectrometer and Camera Transit spectrometer) will measure the spectra of transiting exoplanets in the 2.8 to 20  μm wavelength range and offer unprecedented spectrophotometric precision, enabling definitive exoplanet biosignature detections. The far-IR imager polarimeter will be able to survey thousands of square degrees with broadband imaging at 50 and 250  μm. The Origins Survey Spectrometer will cover wavelengths from 25 to 588  μm, making wide-area and deep spectroscopic surveys with spectral resolving power R  ∼  300, and pointed observations at R  ∼  40,000 and 300,000 with selectable instrument modes. Origins was designed to minimize complexity. The architecture is similar to that of the Spitzer Space Telescope and requires very few deployments after launch, while the cryothermal system design leverages James Webb Space Telescope technology and experience. A combination of current-state-of-the-art cryocoolers and next-generation detector technology will enable Origins’ natural background-limited sensitivity

    The Case for Probe-Class NASA Astrophysics Missions

    Get PDF
    Astrophysics spans an enormous range of questions on scales from individual planets to the entire cosmos. To address the richness of 21st century astrophysics requires a corresponding richness of telescopes spanning all bands and all messengers. Much scientific benefit comes from having the multi-wavelength capability available at the same time. Most of these bands, or measurement sensitivities, require space-based missions. Historically, NASA has addressed this need for breadth with a small number of flagship-class missions and a larger number of Explorer missions. While the Explorer program continues to flourish, there is a large gap between Explorers and strategic missions

    The Origins Space Telescope: mission concept overview

    No full text
    The Origins Space Telescope (OST) will trace the history of our origins from the time dust and heavy elements permanently altered the cosmic landscape to present-day life. How did the universe evolve in response to its changing ingredients? How common are life-bearing planets? To accomplish its scientific objectives, OST will operate at mid-and far-infrared wavelengths and offer superlative sensitivity and new spectroscopic capabilities. The OST study team will present a scientifically compelling, executable mission concept to the 2020 Decadal Survey in Astrophysics. To understand the concept solution space, our team studied two alternative mission concepts. We report on the study approach and describe both of these concepts, give the rationale for major design decisions, and briefly describe the mission-enabling technology.This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    corecore