2,200 research outputs found
Copper cable theft: revisiting the price–theft hypothesis
Objectives: To test the commonly espoused but little examined hypothesis that fluctuations in the price of metal are associated with changes in the volume of metal theft. Specifically, we analyze the relationship between the price of copper and the number of police recorded 'live’ copper cable thefts from the British railway network (2006 to 2012)
Report on a visit to Sri Lanka to evaluate performance of traditional furnace/heat exchanger systems used in the tea industry: 10 to 29 November 1992
Under a project entitled "Fuel efficient wood-fired furnace systems" NRI has developed a fuel efficient wood fired furnace/heat exchanger system suitable for application in developing countries. To gauge its effectiveness in both economic and technical terms a comparative study of a typical system used in the Sri Lankan tea industry was carried out. This was coupled to a detailed energy audit of a tea processing factory in order to assess the relative importance of process heat within the entire manufacturing operation. This exercise was carried out in close collaboration with Browns Engineering, a long established Sri Lankan company which sells and maintains tea furnace/dryer equipment both to the Sri Lankan industry and for export. On the evidence of detailed trial results at one factory, observations in other factories, and discussion with equipment suppliers; there are clearly significant energy savings that could be achieved in the industry. Servicing of existing furnace equipment and furnace operator training should be given high priority. Production scheduling within the new factory groupings·also offers scope for reduced specific energy consumption. It was also established from the assignment that there exists a desire to upgrade furnace equipment in the tea industry. The NRI unit is competitively priced and offers significantly improved wood fuel utilization. Changes in the industry and the plans of new management groups to improve efficiency and update manufacturing techniques makes this an opportune time for introduction of the NRI design. A simple payback financial analysis shows that there are financial benefits in replacing old and inefficient units. A suitable venue for field testing and techno-economic evaluation of performance under prolonged operation has been identified
Application of air injectors to biomass combustion systems. Conveyance of rice husks and other particulate biomass materials (NRI Bulletin 52)
This bulletin describes work carried out by the Process and Storage Engineering Department of the Natural Resources Institute on the conveyance of particulate biomass materials by means of low pressure air injectors for applications in small-scale to medium-scale combustion systems. Experimental data on the injector entrainment ratios for particulate-laden gases are compared with values calculated from theory. Procedures are given for an injector design optimized for minimum fan-power and fan-pressure requirements. lt is concluded that the theoretical procedures developed for injector design and performance prediction for clean gases can also be applied, with simple modifications, to the dilute-phase entrainment of particulate materials in the injectors. This publication is primarily intended for use by engineers in the design of injector systems for application in small-scale to medium-scale particulate biomass combustion systems
Deep proteogenomics; high throughput gene validation by multidimensional liquid chromatography and mass spectrometry of proteins from the fungal wheat pathogen Stagonospora nodorum
BACKGROUND: Stagonospora nodorum, a fungal ascomycete in the class dothideomycetes, is a
damaging pathogen of wheat. It is a model for necrotrophic fungi that cause necrotic symptoms via
the interaction of multiple effector proteins with cultivar-specific receptors. A draft genome
sequence and annotation was published in 2007. A second-pass gene prediction using a training set
of 795 fully EST-supported genes predicted a total of 10762 version 2 nuclear-encoded genes, with
an additional 5354 less reliable version 1 genes also retained.
RESULTS: In this study, we subjected soluble mycelial proteins to proteolysis followed by 2D LC
MALDI-MS/MS. Comparison of the detected peptides with the gene models validated 2134 genes.
62% of these genes (1324) were not supported by prior EST evidence. Of the 2134 validated genes,
all but 188 were version 2 annotations. Statistical analysis of the validated gene models revealed a
preponderance of cytoplasmic and nuclear localised proteins, and proteins with intracellularassociated
GO terms. These statistical associations are consistent with the source of the peptides
used in the study. Comparison with a 6-frame translation of the S. nodorum genome assembly
confirmed 905 existing gene annotations (including 119 not previously confirmed) and provided
evidence supporting 144 genes with coding exon frameshift modifications, 604 genes with
extensions of coding exons into annotated introns or untranslated regions (UTRs), 3 new gene
annotations which were supported by tblastn to NR, and 44 potential new genes residing within
un-assembled regions of the genome.
CONCLUSION: We conclude that 2D LC MALDI-MS/MS is a powerful, rapid and economical tool to
aid in the annotation of fungal genomic assemblies
Temperature dependence of the resonance and low energy spin excitations in superconducting FeTeSe
We use inelastic neutron scattering to study the temperature dependence of
the low-energy spin excitations in single crystals of superconducting
FeTeSe ( K). In the low-temperature superconducting
state, the imaginary part of the dynamic susceptibility at the electron and
hole Fermi surfaces nesting wave vector ,
, has a small spin gap, a two-dimensional
neutron spin resonance above the spin gap, and increases linearly with
increasing for energies above the resonance. While the intensity
of the resonance decreases like an order parameter with increasing temperature
and disappears at temperature slightly above , the energy of the mode is
weakly temperature dependent and vanishes concurrently above . This
suggests that in spite of its similarities with the resonance in electron-doped
superconducting BaFe(Co,Ni)As, the mode in
FeTeSe is not directly associated with the superconducting
electronic gap.Comment: 7 pages, 6 figure
Anisotropic Neutron Spin Resonance in Superconducting BaFeNiAs
We use polarized inelastic neutron scattering to show that the neutron spin
resonance below in superconducting BaFeNiAs (
K) is purely magnetic in origin. Our analysis further reveals that the
resonance peak near 7~meV only occurs for the planar response. This challenges
the common perception that the spin resonance in the pnictides is an isotropic
triplet excited state of the singlet Cooper pairs, as our results imply that
only the components of the triplet are involved
A rare schizophrenia risk variant of CACNA1I disrupts CaV3.3 channel activity
CACNA1I is a candidate schizophrenia risk gene. It encodes the pore-forming human CaV3.3 α1 subunit, a subtype of voltage-gated calcium channel that contributes to T-type currents. Recently, two de novo missense variations, T797M and R1346H, of hCaV3.3 were identified in individuals with schizophrenia. Here we show that R1346H, but not T797M, is associated with lower hCaV3.3 protein levels, reduced glycosylation, and lower membrane surface levels of hCaV3.3 when expressed in human cell lines compared to wild-type. Consistent with our biochemical analyses, whole-cell hCaV3.3 currents in cells expressing the R1346H variant were ~50% of those in cells expressing WT hCaV3.3, and neither R1346H nor T797M altered channel biophysical properties. Employing the NEURON simulation environment, we found that reducing hCaV3.3 current densities by 22% or more eliminates rebound bursting in model thalamic reticular nucleus (TRN) neurons. Our analyses suggest that a single copy of Chr22: 39665939G > A CACNA1I has the capacity to disrupt CaV3.3 channel-dependent functions, including rebound bursting in TRN neurons, with potential implications for schizophrenia pathophysiology
Self-gravitating clouds of generalized Chaplygin and modified anti-Chaplygin Gases
The Chaplygin gas has been proposed as a possible dark energy, dark matter
candidate. As a working fluid in a Friedmann-Robertson-Walker universe, it
exhibits early behavior reminiscent of dark matter, but at later times is more
akin to a cosmological constant. In any such universe, however, one can expect
local perturbations to form. Here we obtain the general equations for a
self-gravitating relativistic Chaplygin gas. We solve these equations and
obtain the mass-radius relationship for such structures, showing that only in
the phantom regime is the mass-radius relationship large enough to be a serious
candidate for highly compact massive objects at the galaxy core. In addition,
we study the cosmology of a modified anti-Chaplygin gas. A self-gravitating
cloud of this matter is an exact solution to Einstein's equations.Comment: 16 page
Field-Induced Magnetostructural Transitions in Antiferromagnetic Fe1+yTe1-xSx
The transport and structural properties of Fe1+yTe1-xSx (x=0, 0.05, and 0.10)
crystals were studied in pulsed magnetic fields up to 65 T. The application of
high magnetic fields results in positive magnetoresistance effect with
prominent hystereses in the antiferromagnetic state. Polarizing microscope
images obtained at high magnetic fields showed simultaneous occurrence of
structural transitions. These results indicate that magnetoelastic coupling is
the origin of the bicollinear magnetic order in iron chalcogenides.Comment: 5 pages, 5 figures, accepted for publication in Journal of the
Physical Society of Japa
A Right to ‘Dying Well’ with Dementia? Capacity, ‘Choice’ and Relationality.
A right to 'dying well' with dementia? Capacity, 'choice' and relationalit
- …
