13 research outputs found
NLRP3 protects alveolar barrier integrity by an inflammasome-independent increase of epithelial cell adherence
Bacterial pneumonia is a major cause of acute lung injury and acute
respiratory distress syndrome, characterized by alveolar barrier disruption.
NLRP3 is best known for its ability to form inflammasomes and to regulate IL-
1β and IL-18 production in myeloid cells. Here we show that NLRP3 protects the
integrity of the alveolar barrier in a mouse model of Streptococcus
pneumoniae-induced pneumonia, and ex vivo upon treatment of isolated perfused
and ventilated lungs with the purified bacterial toxin, pneumolysin. We reveal
that the preserving effect of NLRP3 on the lung barrier is independent of
inflammasomes, IL-1β and IL-18. NLRP3 improves the integrity of alveolar
epithelial cell monolayers by enhancing cellular adherence. Collectively, our
study uncovers a novel function of NLRP3 by demonstrating that it protects
epithelial barrier function independently of inflammasomes
Dissection of a Type I Interferon Pathway in Controlling Bacterial Intracellular Infection in Mice
Defense mechanisms against intracellular bacterial pathogens are incompletely understood. Our study characterizes a type I IFN-dependent cell-autonomous defense pathway directed against Legionella pneumophila, an intracellular model organism and frequent cause of pneumonia. We show that macrophages infected with L. pneumophila produced IFNβ in a STING- and IRF3- dependent manner. Paracrine type I IFNs stimulated up-regulation of IFN-stimulated genes and a cell-autonomous defense pathway acting on replicating and non-replicating Legionella within their specialized vacuole. Our infection experiments in mice lacking receptors for type I and/or II IFNs show that type I IFNs contribute to expression of IFN-stimulated genes and to bacterial clearance as well as resistance in L. pneumophila pneumonia in addition to type II IFN. Overall, our study shows that paracrine type I IFNs mediate defense against L. pneumophila, and demonstrates a protective role of type I IFNs in in vivo infections with intracellular bacteria
Phagosomal Rupture by Mycobacterium tuberculosis Results in Toxicity and Host Cell Death
Survival within macrophages is a central feature of Mycobacterium tuberculosis pathogenesis. Despite significant advances in identifying new immunological parameters associated with mycobacterial disease, some basic questions on the intracellular fate of the causative agent of human tuberculosis in antigen-presenting cells are still under debate. To get novel insights into this matter, we used a single-cell fluorescence resonance energy transfer (FRET)-based method to investigate the potential cytosolic access of M. tuberculosis and the resulting cellular consequences in an unbiased, quantitative way. Analysis of thousands of THP-1 macrophages infected with selected wild-type or mutant strains of the M. tuberculosis complex unambiguously showed that M. tuberculosis induced a change in the FRET signal after 3 to 4 days of infection, indicating phagolysosomal rupture and cytosolic access. These effects were not seen for the strains M. tuberculosisΔRD1 or BCG, both lacking the ESX-1 secreted protein ESAT-6, which reportedly shows membrane-lysing properties. Complementation of these strains with the ESX-1 secretion system of M. tuberculosis restored the ability to cause phagolysosomal rupture. In addition, control experiments with the fish pathogen Mycobacterium marinum showed phagolysosomal translocation only for ESX-1 intact strains, further validating our experimental approach. Most importantly, for M. tuberculosis as well as for M. marinum we observed that phagolysosomal rupture was followed by necrotic cell death of the infected macrophages, whereas ESX-1 deletion- or truncation-mutants that remained enclosed within phagolysosomal compartments did not induce such cytotoxicity. Hence, we provide a novel mechanism how ESX-1 competent, virulent M. tuberculosis and M. marinum strains induce host cell death and thereby escape innate host defenses and favor their spread to new cells. In this respect, our results also open new research directions in relation with the extracellular localization of M. tuberculosis inside necrotic lesions that can now be tackled from a completely new perspective
Redox Modulation and Induction of Ferroptosis as a New Therapeutic Strategy in Hepatocellular Carcinoma.
Ferroptosis, a newly discovered form of cell death mediated by reactive oxygen species (ROS) and lipid peroxidation, has recently been shown to have an impact on various cancer types; however, so far there are only few studies about its role in hepatocellular carcinoma (HCC). The delicate equilibrium of ROS in cancer cells has found to be crucial for cell survival, thus increased levels may trigger ferroptosis in HCC. In our study, we investigated the effect of different ROS modulators and ferroptosis inducers on a human HCC cell line and a human hepatoblastoma cell line. We identified a novel synergistic cell death induction by the combination of Auranofin and buthionine sulfoxime (BSO) or by Erastin and BSO at subtoxic concentrations. We found a caspase-independent, redox-regulated cell death, which could be rescued by different inhibitors of ferroptosis. Both cotreatments stimulated lipid peroxidation. All these findings indicated ferroptotic cell death. Both cotreatments affected the canonical ferroptosis pathway through GPX4 downregulation. We also found an accumulation of Nrf2 and HO-1, indicating an additional effect on the non-canonical pathway. Our results implicate that targeting these two main ferroptotic pathways simultaneously can overcome chemotherapy resistance in HCC
The modulation of redox homeostasis and induction of ferroptotic cell death in hepatocellular carcinoma as an anticancer strategy
Introduction: Ferroptosis has recently been identified as a form of programmed cell death caused by an accumulation of lipid reactive oxygen species (ROS). However, little is yet known about the role in hepatocellular carcinoma (HCC) and its signalling mechanism as well the modulation of ROS.
Material and methods: Human HCC cell lines were treated with different concentrations of ROS modulators (Auranofin, Erastin, BSO). Cell death was determined by analysis of PI-stained nuclei using flow cytometry. ROS production and lipid peroxidation were analysed at early time points before cell death starts. For mechanistic studies we performed Western Blot and a Proteome array. Different inhibitors of cell death target proteins, ROS-scavengers as well as lipoxygenase inhibitors were used. To investigate the functional relevance of NAPDH oxidases (NOX) 1 and 4 for ROS modulation and ferroptosis we genetically silenced its genes using three distinct siRNAs and we used the NOX1/4-inhibitor GKT137831.
Results and discussions: Compared to the single treatment, Auranofin/BSO-cotreatment as well as Erastin/BSO-cotreatment acted in concert to trigger cell death and to reduce cell viability of HCC cells in a dose- and time-dependent manner. Furthermore, both cotreatments induce ROS production, lipid peroxidation and ferroptotic cell death, which could be inhibited by the use of Ferrostatin-1 (inhibitor of lipid peroxidation) and Liproxstatin-1 (specific inhibitor of ferroptosis). The broad-range caspase inhibitor zVAD.fmk failed to rescue cells from Auranofin/BSO- or Erastin/BSO-cotreatment induced cell death. No activation of caspases-3 could be seen in the proteome profiler apoptosis assay. Importantly, the selective lipoxygenase (LOX) inhibitor Baicalain and the pan-LOX inhibitor NDGA protect HCC cells from Auranofin/BSO- and Erastin/BSO-cotreatment stimulated lipid peroxidation, ROS generation and cell death, indication that the induction of ferroptosis may bypass apoptosis resistance of HCC cells. Mechanistic studies showed that Auranofin/BSO-cotreatment decreased TrxR-activity, led to Nrf2 accumulation and promoted the activation of HO-1. In contrast, NOX 1 and 4 were involved in Erastin/BSO-mediated cell death and the use of the NOX1/4-inhibitor GKT137831 rescued HCC cells from the Erastin/BSO-induced cell death.
Conclusion: By providing new insights into the molecular regulation of ROS and ferroptosis, our study contributes to the development of novel treatment strategies to reactivate programmed cell death in HCC cells
Redox modulation and induction of ferroptosis as a new therapeutic strategy in hepatocellular carcinoma
Ferroptosis, a newly discovered form of cell death mediated by reactive oxygen species (ROS) and lipid peroxidation, has recently been shown to have an impact on various cancer types; however, so far there are only few studies about its role in hepatocellular carcinoma (HCC). The delicate equilibrium of ROS in cancer cells has found to be crucial for cell survival, thus increased levels may trigger ferroptosis in HCC.In our study, we investigated the effect of different ROS modulators and ferroptosis inducers on a human HCC cell line and a human hepatoblastoma cell line. We identified a novel synergistic cell death induction by the combination of Auranofin and buthionine sulfoxime (BSO) or by Erastin and BSO at subtoxic concentrations. We found a caspase-independent, redox-regulated cell death, which could be rescued by different inhibitors of ferroptosis. Both cotreatments stimulated lipid peroxidation. All these findings indicated ferroptotic cell death. Both cotreatments affected the canonical ferroptosis pathway through GPX4 downregulation. We also found an accumulation of Nrf2 and HO-1, indicating an additional effect on the non-canonical pathway. Our results implicate that targeting these two main ferroptotic pathways simultaneously can overcome chemotherapy resistance in HCC
Bacterial Internalization, Localization, and Effectors Shape the Epithelial Immune Response during Shigella flexneri Infection
International audienceIntracellular pathogens are differentially sensed by the compartmentalized host immune system. Nevertheless, gene expression studies of infected cells commonly average the immune responses, neglecting the precise pathogen localization. To overcome this limitation, we dissected the transcriptional immune response to Shigella flexneri across different infection stages in bulk and single cells. This identified six distinct transcriptional profiles characterizing the dynamic, multilayered host response in both bystander and infected cells. These profiles were regulated by external and internal danger signals, as well as whether bacteria were membrane bound or cytosolic. We found that bacterial internalization triggers a complex, effector-independent response in bystander cells, possibly to compensate for the undermined host gene expression in infected cells caused by bacterial effectors, particularly OspF. Single-cell analysis revealed an important bacterial strategy to subvert host responses in infected cells, demonstrating that OspF disrupts concomitant gene expression of proinflammatory, apoptosis, and stress pathways within cells. This study points to novel mechanisms through which bacterial internalization, localization, and injected effectors orchestrate immune response transcriptional signatures
<i>M. marinum</i>, <i>M. smegmatis</i>, <i>M. tuberculosis</i> and BCG display beta-lactamase activity as shown by their ability to cleave the CCF-4 substrate <i>in vitro.</i>
<p>The table summarizes the data obtained from the emission spectra measured by fluorimetry in <a href="http://www.plospathogens.org/article/info:doi/10.1371/journal.ppat.1002507#ppat.1002507.s001" target="_blank">Figure S1</a>. The ratios reflect the intensity of the 450 nm emission peak divided by the intensity of the 535 nm emission peak upon 405 nm excitation.</p><p>Standard deviation was calculated based on 2 independent experiments.</p
Analysis of ESX-1 deletion-, truncation- and complementation-mutants highlights the link between phagosomal rupture and functional ESX-1 secretion.
<p>THP-1 cells were infected with <i>M. tuberculosis</i>ΔRD1 (A,D), BCG::RD1 (B,E) or BCG::RD1-ESAT-6Δ84–95 (C,F) at a MOI of 1 for the indicated time and then loaded with CCF-4 molecule for 2 h. After PFA fixation, cells were imaged using a fluorescence widefield microscope (Nikon Ti) equipped with a 40X objective (A,B,C). Picture acquisition was achieved randomly and automatically for each condition on 49 fields in duplicates and further 450/535 nm intensity ratio measurement (D,E,F) was obtained through analysis by a specialized algorithm using the Metamorph software. The plots are representative of 3 independent experiments.</p
Necrosis induction does not lead to the release of mycobacteria from the phagolysosome to the cytosol.
<p>THP-1 cells were infected with BCG at a MOI of 1 for 2 days before necrosis induction using 100 µg/ml concanavalin A for 24 h or 48 h. After CCF-4 loading for 2 h, cells were incubated 5 minutes in the presence of 2 µg/ml propidium iodide (PI) and then subjected to PFA fixation. Cells were imaged using fluorescence widefield Nikon Ti microscope with 40X objective (A). Picture acquisition was achieved randomly and automatically for each condition on 49 fields and further 450/535 nm intensity ratio measurements (B,C) were obtained through analysis by a specialized algorithm using the Metamorph software. The plots were representative of 2 independent experiments.</p