248 research outputs found

    Time-energy correlations in solar flare occurrence

    Full text link
    The existence of time-energy correlations in flare occurrence is still an open and much debated problem. This study addresses the question whether statistically significant correlations are present between energies of successive flares as well as energies and waiting times. We analyze the GOES catalog with a statistical approach based on the comparison of the real catalog with a reshuffled one where energies are decorrelated. This analysis reduces the effect of background activity and is able to reveal the role of obscuration. We show the existence of non-trivial correlations between waiting times and energies, as well as between energies of subsequent flares. More precisely, we find that flares close in time tend to have the second event with large energy. Moreover, after large flares the flaring rate significantly increases, together with the probability of other large flares. Results suggest that correlations between energies and waiting times are a physical property and not an effect of obscuration. These findings could give important information on the mechanisms for energy storage and release in the solar corona

    Induced and endogenous acoustic oscillations in granular faults

    Full text link
    The frictional properties of disordered systems are affected by external perturbations. These perturbations usually weaken the system by reducing the macroscopic friction coefficient. This friction reduction is of particular interest in the case of disordered systems composed of granular particles confined between two plates, as this is a simple model of seismic fault. Indeed, in the geophysical context frictional weakening could explain the unexpected weakness of some faults, as well as earthquake remote triggering. In this manuscript we review recent results concerning the response of confined granular systems to external perturbations, considering the different mechanisms by which the perturbation could weaken a system, the relevance of the frictional reduction to earthquakes, as well as discussing the intriguing scenario whereby the weakening is not monotonic in the perturbation frequency, so that a re-entrant transition is observed, as the system first enters a fluidized state and then returns to a frictional state.Comment: 15 pages, 12 figure

    Generic features of the fluctuation dissipation relation in coarsening systems

    Full text link
    The integrated response function in phase-ordering systems with scalar, vector, conserved and non conserved order parameter is studied at various space dimensionalities. Assuming scaling of the aging contribution χag(t,tw)=twaχχ^(t/tw)\chi_{ag} (t,t_w)= t_w ^{-a_\chi} \hat \chi (t/t_w) we obtain, by numerical simulations and analytical arguments, the phenomenological formula describing the dimensionality dependence of aχa_\chi in all cases considered. The primary result is that aχa_\chi vanishes continuously as dd approaches the lower critical dimensionality dLd_L. This implies that i) the existence of a non trivial fluctuation dissipation relation and ii) the failure of the connection between statics and dynamics are generic features of phase ordering at dLd_L.Comment: 6 pages, 5 figure

    Memory in Self Organized Criticality

    Full text link
    Many natural phenomena exhibit power law behaviour in the distribution of event size. This scaling is successfully reproduced by Self Organized Criticality (SOC). On the other hand, temporal occurrence in SOC models has a Poisson-like statistics, i.e. exponential behaviour in the inter-event time distribution, in contrast with experimental observations. We present a SOC model with memory: events are nucleated not only as a consequence of the instantaneous value of the local field with respect to the firing threshold, but on the basis of the whole history of the system. The model is able to reproduce the complex behaviour of inter-event time distribution, in excellent agreement with experimental seismic data

    Interface fluctuations, bulk fluctuations and dimensionality in the off-equilibrium response of coarsening systems

    Full text link
    The relationship between statics and dynamics proposed by Franz, Mezard, Parisi and Peliti (FMPP) for slowly relaxing systems [Phys.Rev.Lett. {\bf 81}, 1758 (1998)] is investigated in the framework of non disordered coarsening systems. Separating the bulk from interface response we find that for statics to be retrievable from dynamics the interface contribution must be asymptotically negligible. How fast this happens depends on dimensionality. There exists a critical dimensionality above which the interface response vanishes like the interface density and below which it vanishes more slowly. At d=1d=1 the interface response does not vanish leading to the violation of the FMPP scheme. This behavior is explained in terms of the competition between curvature driven and field driven interface motion.Comment: 11 pages, 3 figures. Significantly improved version of the paper with new results, new numerical simulations and new figure

    On the influence of time and space correlations on the next earthquake magnitude

    Full text link
    A crucial point in the debate on feasibility of earthquake prediction is the dependence of an earthquake magnitude from past seismicity. Indeed, whilst clustering in time and space is widely accepted, much more questionable is the existence of magnitude correlations. The standard approach generally assumes that magnitudes are independent and therefore in principle unpredictable. Here we show the existence of clustering in magnitude: earthquakes occur with higher probability close in time, space and magnitude to previous events. More precisely, the next earthquake tends to have a magnitude similar but smaller than the previous one. A dynamical scaling relation between magnitude, time and space distances reproduces the complex pattern of magnitude, spatial and temporal correlations observed in experimental seismic catalogs.Comment: 4 Figure

    Nonlinear response and fluctuation dissipation relations

    Full text link
    A unified derivation of the off equilibrium fluctuation dissipation relations (FDR) is given for Ising and continous spins to arbitrary order, within the framework of Markovian stochastic dynamics. Knowledge of the FDR allows to develop zero field algorithms for the efficient numerical computation of the response functions. Two applications are presented. In the first one, the problem of probing for the existence of a growing cooperative length scale is considered in those cases, like in glassy systems, where the linear FDR is of no use. The effectiveness of an appropriate second order FDR is illustrated in the test case of the Edwards-Anderson spin glass in one and two dimensions. In the second one, the important problem of the definition of an off equilibrium effective temperature through the nonlinear FDR is considered. It is shown that, in the case of coarsening systems, the effective temperature derived from the second order FDR is consistent with the one obtained from the linear FDR.Comment: 24 pages, 6 figure

    The daily life of a researcher introduced with an online data analysis experience based on visual programming

    Get PDF
    A common criticism for the Italian higher education system is the gap that separates it from the employment landscape. To improve this situation, our department and schools are sponsoring internships, to expose the students to the work life. Groups of two high school students are invited to work with researchers for a week. A tutor introduces them to the research theme and proposes related activities. In order not to require previous experience with programming languages, the visual programming language Blockly is used as the development toolkit, for its suitability for educational activities. We present the development of new functionalities for Blockly purposely for the project: online reading data from a real detection system, interactive analysis, and online data visualization. The activity was successfully experienced by the students hosted in the research group. The actual implementation of the analysis algorithm was quickly achieved, even with no prior experience with data analysis. We bypassed the difficulties related to the syntax of programming languages, by employing Blockly and our added features; this allowed us to focus on the fundamental concepts. The students enjoyed the whole experience and were very proactive asking relevant questions and proposing ideas
    corecore