31 research outputs found

    Using creative writing to explore facilitation skills in practice

    Get PDF
    Background: Facilitation skills are key to the effective use of practice development strategies. Students on a Masters in Practice Development and Innovation undertake a module on Facilitation skills which incorporates the use of a creative writing piece to explore facilitation. The aim of this article is to critically reflect on the use of creative writing within an assignment from the lecturer perspective. Critical Reflection: Rolfe et al (2001) model of reflection will be utilised to structure the reflections, considering the questions ‘What?’, ‘So What?’ and ‘Now What?’. This will discuss the concerns about the assessment method, student thoughts, relationship to practice development and evidence of effectiveness of the strategy. Examples of creative writing from the students will be used to demonstrate the diversity of the approach. Ethics: All students have given permission for their work to be included Discussion: Using creative writing can be freeing for students as they can use their voice to explore a topic. For the lecturer courage is needed to facilitate this expression but is rewarding as links to the principles of practice development to embed new ways of working. Important within the process is the need to give students ‘permission’ to utilise a non-traditional style of writing and the lecturer may benefit from practising the technique themselves to feel comfortable with the creative writing strategy. Conclusion: Creative writing enabled an opportunity to explore facilitation in different ways and relate to different aspects of real and imagined life. This paper shows that creative writing can be used successfully by students to engage in novel ways of thinking. However, future actions identify the importance of guidance regarding relevance to academia and ensuring the lecturer is familiar with the aim and techniques of the process when using it for Masters level assessment

    Methods for the evaluation of biomarkers in patients with kidney and liver diseases: multicentre research programme including ELUCIDATE RCT

    Get PDF
    Background: Protein biomarkers with associations with the activity and outcomes of diseases are being identified by modern proteomic technologies. They may be simple, accessible, cheap and safe tests that can inform diagnosis, prognosis, treatment selection, monitoring of disease activity and therapy and may substitute for complex, invasive and expensive tests. However, their potential is not yet being realised. Design and methods: The study consisted of three workstreams to create a framework for research: workstream 1, methodology – to define current practice and explore methodology innovations for biomarkers for monitoring disease; workstream 2, clinical translation – to create a framework of research practice, high-quality samples and related clinical data to evaluate the validity and clinical utility of protein biomarkers; and workstream 3, the ELF to Uncover Cirrhosis as an Indication for Diagnosis and Action for Treatable Event (ELUCIDATE) randomised controlled trial (RCT) – an exemplar RCT of an established test, the ADVIA Centaur® Enhanced Liver Fibrosis (ELF) test (Siemens Healthcare Diagnostics Ltd, Camberley, UK) [consisting of a panel of three markers – (1) serum hyaluronic acid, (2) amino-terminal propeptide of type III procollagen and (3) tissue inhibitor of metalloproteinase 1], for liver cirrhosis to determine its impact on diagnostic timing and the management of cirrhosis and the process of care and improving outcomes. Results: The methodology workstream evaluated the quality of recommendations for using prostate-specific antigen to monitor patients, systematically reviewed RCTs of monitoring strategies and reviewed the monitoring biomarker literature and how monitoring can have an impact on outcomes. Simulation studies were conducted to evaluate monitoring and improve the merits of health care. The monitoring biomarker literature is modest and robust conclusions are infrequent. We recommend improvements in research practice. Patients strongly endorsed the need for robust and conclusive research in this area. The clinical translation workstream focused on analytical and clinical validity. Cohorts were established for renal cell carcinoma (RCC) and renal transplantation (RT), with samples and patient data from multiple centres, as a rapid-access resource to evaluate the validity of biomarkers. Candidate biomarkers for RCC and RT were identified from the literature and their quality was evaluated and selected biomarkers were prioritised. The duration of follow-up was a limitation but biomarkers were identified that may be taken forward for clinical utility. In the third workstream, the ELUCIDATE trial registered 1303 patients and randomised 878 patients out of a target of 1000. The trial started late and recruited slowly initially but ultimately recruited with good statistical power to answer the key questions. ELF monitoring altered the patient process of care and may show benefits from the early introduction of interventions with further follow-up. The ELUCIDATE trial was an ‘exemplar’ trial that has demonstrated the challenges of evaluating biomarker strategies in ‘end-to-end’ RCTs and will inform future study designs. Conclusions: The limitations in the programme were principally that, during the collection and curation of the cohorts of patients with RCC and RT, the pace of discovery of new biomarkers in commercial and non-commercial research was slower than anticipated and so conclusive evaluations using the cohorts are few; however, access to the cohorts will be sustained for future new biomarkers. The ELUCIDATE trial was slow to start and recruit to, with a late surge of recruitment, and so final conclusions about the impact of the ELF test on long-term outcomes await further follow-up. The findings from the three workstreams were used to synthesise a strategy and framework for future biomarker evaluations incorporating innovations in study design, health economics and health informatics

    The distribution of reactive iron in northern Gulf of Alaska coastal waters

    No full text
    Coastal waters in the northern Gulf of Alaska (GoA) are considered iron-rich and nitrate-poor, in contrast to the iron-poor, high-nitrate, low chlorophyll (HNLC) waters of the central GoA. The degree of mixing between these two regimes, enhanced by mesoscale eddies, is essential to the high productivity observed in the region. As part of a study on iron delivery to the central GoA via mesoscale eddies, extensive work was focused on characterizing the coastal endmember, the Alaska Coastal Current. In surface Alaskan coastal waters between Yakutat and the Kenai Peninsula, dissolved iron concentrations ranged from 0.5 to 4.1. nM with an average of ~. 2. nM. In contrast, leachable particulate iron concentrations were much higher and more variable, ranging from over 1 μM in the Alsek River plume to less than 5. nM at the base of Cook Inlet. Cross-shelf transport of both surface and subsurface dissolved iron and leachable particulate iron was observed. Throughout the study area, leachable particulate iron values were at least an order of magnitude higher than dissolved values, suggesting that the system's ability to solubilize this large concentration of leachable particulate iron is overwhelmed by the massive input of glacial-derived particulate iron. Nevertheless, suspended leachable particulate iron remains available for exchange to the dissolved phase and is suggested to maintain a relatively constant (~. 2. nM) source of dissolved iron in the coastal GoA.</p

    Reactive iron delivery to the Gulf of Alaska via a Kenai eddy

    No full text
    Mesoscale anticyclonic eddies in the Gulf of Alaska are an important mechanism for cross-shelf exchange of high iron, low nitrate coastal waters and low iron, high nitrate offshore waters. A Kenai eddy was sampled in September 2007, 8 months after formation. The subsurface eddy core layer contained reactive iron concentrations more than eight times greater than waters at the same depths outside the eddy. The subsurface core of the Kenai eddy (25.4≤σθ≤25.8) is suggested to be seasonally important as these waters can be brought to the surface with storm events and deep winter mixing. The deeper core layer (25.8≤σθ≤27.0) is suggested to be a source of iron to HNLC waters on a longer timescale, due to isopycnal mixing and eventual eddy relaxation. The subsurface and deeper core layers are important reservoirs of iron that can promote and sustain primary productivity over the lifetime of the Kenai eddy. In addition, dissolved and leachable particulate manganese are shown to be excellent tracers of eddy surface and subsurface waters, respectively.</p

    Trace metal distributions within a Sitka eddy in the northern Gulf of Alaska

    No full text
    In the northern Gulf of Alaska, mesoscale, anticyclonic eddies have been implicated as a mechanism of the cross-shelf exchange of iron (Fe)-replete coastal waters with Fe-deplete subarctic Alaskan gyre waters. Based on existing hydrography and macronutrient distributions, a Sitka eddy sampled during August 2007 is divided into a surface eddy core, a shallow subsurface eddy core, and a deeper subsurface eddy core. The distributions of aluminum (Al), manganese (Mn), and Fe in the eddy are examined and compared to distributions at shelf stations similar to where the eddy formed as well as basin stations representative of the Fe-limited subarctic Alaskan gyre. Relative to basin stations, dissolved and particulate Al and dissolved Mn were elevated in eddy core waters. Reactive Fe concentrations within the shallow subsurface eddy core were nearly seven times greater than reactive Fe concentrations at similar densities at the basin stations. This shallow subsurface eddy core is likely mixed into the euphotic zone during storm-induced mixing as well as mixing during isopycnal relaxation as an eddy dies out. The flux of reactive Fe to surface waters from the shallow subsurface core of eddies in the Gulf of Alaska is a significant source compared to both remote and local atmospheric dust deposition. It is hypothesized that Fe supply from eddies in the eastern Gulf of Alaska shifts the core of the high-nutrient, lower-than-expected chlorophyll water farther west in conjunction with an ''eddy desert'' in that same region.</p

    Leachable particulate iron in the Columbia River, estuary, and near-field plume

    No full text
    This study examines the distribution of leachable particulate iron (Fe) in the Columbia River, estuary, and near-field plume. Surface samples were collected during late spring and summer of 2004-2006 as part of four River Influence on Shelf Ecosystems (RISE) cruises. Tidal amplitude and river flow are the primary factors influencing the estuary leachable particulate Fe concentrations, with greater values during high flow and/or spring tides. Near the mouth of the estuary, leachable particulate Fe [defined as the particulate Fe solubilized with a 25% acetic acid (pH 2) leach containing a weak reducing agent to reduce Fe oxyhydroxides and a short heating step to access intracellular Fe] averaged 770 nM during either spring tide or high flow, compared to 320 nM during neap tide, low flow conditions. In the near-field Columbia River plume, elevated leachable particulate Fe concentrations occur during spring tides and/or higher river flow, with resuspended shelf sediment as an additional source to the plume during periods of coastal upwelling and spring tides. Near-field plume concentrations of leachable particulate Fe (at a salinity of 20) averaged 660 nM during either spring tide or high flow, compared to 300 nM during neap tide, low flow conditions. Regardless of tidal amplitude and river flow, leachable particulate Fe concentrations in both the river/estuary and near-field plume are consistently one to two orders of magnitude greater than dissolved Fe concentrations. The Columbia River is an important source of reactive Fe to the productive coastal waters off Oregon and Washington, and leachable particulate Fe is available for solubilization following biological drawdown of the dissolved phase. Elevated leachable Fe concentrations allow coastal waters influenced by the Columbia River plume to remain Fe-replete and support phytoplankton production during the spring and summer seasons.</p
    corecore