636 research outputs found
Lateral diffusion of a protein on a fluctuating membrane
Measurements of lateral diffusion of proteins in a membrane typically assume
that the movement of the protein occurs in a flat plane. Real membranes,
however, are subject to thermal fluctuations, leading to movement of an
inclusion into the third dimension. We calculate the magnitude of this effect
by projecting real three-dimensional diffusion onto an effective one on a flat
plane. We consider both a protein that is free to diffuse in the membrane and
one that also couples to the local curvature. For a freely diffusing inclusion
the measured projected diffusion constant is up to 15% smaller than the actual
value. Coupling to the curvature enhances diffusion significantly up to a
factor of two.Comment: 6 pages, 4 figure
Hydrodynamic lift on bound vesicles
Bound vesicles subject to lateral forces such as arising from shear flow are
investigated theoretically by combining a lubrication analysis of the bound
part with a scaling approach to the global motion. A minor inclination of the
bound part leads to significant lift due to the additive effects of lateral and
tank-treading motions. With increasing shear rate, the vesicle unbinds from the
substrate at a critical value. Estimates are in agreement with recent
experimental data.Comment: 9 pages, one figur
Phase transitions in systems with two species of molecular motors
Systems with two species of active molecular motors moving on (cytoskeletal)
filaments into opposite directions are studied theoretically using driven
lattice gas models. The motors can unbind from and rebind to the filaments. Two
motors are more likely to bind on adjacent filament sites if they belong to the
same species. These systems exhibit (i) Continuous phase transitions towards
states with spontaneously broken symmetry, where one motor species is largely
excluded from the filament, (ii) Hysteresis of the total current upon varying
the relative concentrations of the two motor species, and (iii) Coexistence of
traffic lanes with opposite directionality in multi-filament systems. These
theoretical predictions should be experimentally accessible.Comment: 7 pages, 4 figures, epl style (.cls-file included), to appear in
Europhys. Lett. (http://www.edpsciences.org/epl
Coexistence of dilute and densely packed domains of ligand-receptor bonds in membrane adhesion
We analyze the stability of micro-domains of ligand-receptor bonds that
mediate the adhesion of biological model membranes. After evaluating the
effects of membrane fluctuations on the binding affinity of a single bond, we
characterize the organization of bonds within the domains by theoretical means.
In a large range of parameters, we find the commonly suggested dense packing to
be separated by a free energy barrier from a regime in which bonds are sparsely
distributed. If bonds are mobile, a coexistence of the two regimes should
emerge, which agrees with recent experimental observations.Comment: 6 pages, 6 figures, accepted by EP
Lateral phase separation in mixtures of lipids and cholesterol
In an effort to understand "rafts" in biological membranes, we propose phenomenological models for saturated and unsaturated lipid mixtures, and lipid-cholesterol mixtures. We consider simple couplings between the local composition and internal membrane structure, and their influence on transitions between liquid and gel membrane phases. Assuming that the gel transition temperature of the saturated lipid is shifted by the presence of the unsaturated lipid, and that cholesterol acts as an external field on the chain melting transition, a variety of phase diagrams are obtained. The phase diagrams for binary mixtures of saturated/unsaturated lipids and lipid/cholesterol are in semi-quantitative agreement with the experiments. Our results also apply to regions in the ternary phase diagram of lipid/lipid/cholesterol systems
Boundary and Bulk Phase Transitions in the Two Dimensional Q > 4 State Potts Model
The surface and bulk properties of the two-dimensional Q > 4 state Potts
model in the vicinity of the first order bulk transition point have been
studied by exact calculations and by density matrix renormalization group
techniques. For the surface transition the complete analytical solution of the
problem is presented in the limit, including the critical and
tricritical exponents, magnetization profiles and scaling functions. According
to the accurate numerical results the universality class of the surface
transition is independent of the value of Q > 4. For the bulk transition we
have numerically calculated the latent heat and the magnetization discontinuity
and we have shown that the correlation lengths in the ordered and in the
disordered phases are identical at the transition point.Comment: 11 pages, RevTeX, 6 PostScript figures included. Manuscript
substantially extended, details on the analytical and numerical calculations
added. To appear in Phys. Rev.
Hamilton's equations for a fluid membrane: axial symmetry
Consider a homogenous fluid membrane, or vesicle, described by the
Helfrich-Canham energy, quadratic in the mean curvature. When the membrane is
axially symmetric, this energy can be viewed as an `action' describing the
motion of a particle; the contours of equilibrium geometries are identified
with particle trajectories. A novel Hamiltonian formulation of the problem is
presented which exhibits the following two features: {\it (i)} the second
derivatives appearing in the action through the mean curvature are accommodated
in a natural phase space; {\it (ii)} the intrinsic freedom associated with the
choice of evolution parameter along the contour is preserved. As a result, the
phase space involves momenta conjugate not only to the particle position but
also to its velocity, and there are constraints on the phase space variables.
This formulation provides the groundwork for a field theoretical generalization
to arbitrary configurations, with the particle replaced by a loop in space.Comment: 11 page
Attractive instability of oppositely charged membranes induced by charge density fluctuations
We predict the conditions under which two oppositely charged membranes show a
dynamic, attractive instability. Two layers with unequal charges of opposite
sign can repel or be stable when in close proximity. However, dynamic charge
density fluctuations can induce an attractive instability and thus facilitate
fusion. We predict the dominant instability modes and timescales and show how
these are controlled by the relative charge and membrane viscosities. These
dynamic instabilities may be the precursors of membrane fusion in systems where
artificial vesicles are engulfed by biological cells of opposite charge
Directed polymers in high dimensions
We study directed polymers subject to a quenched random potential in d
transversal dimensions. This system is closely related to the
Kardar-Parisi-Zhang equation of nonlinear stochastic growth. By a careful
analysis of the perturbation theory we show that physical quantities develop
singular behavior for d to 4. For example, the universal finite size amplitude
of the free energy at the roughening transition is proportional to (4-d)^(1/2).
This shows that the dimension d=4 plays a special role for this system and
points towards d=4 as the upper critical dimension of the Kardar-Parisi-Zhang
problem.Comment: 37 pages REVTEX including 4 PostScript figure
- …
