236 research outputs found

    Efficacy of an autogenous vaccine against highly virulent "Staphylococcus aureus" infection in rabbits

    Full text link
    [EN] The efficacy of an autogenous vaccine consisting of a whole cell suspension of formalin killed bacteria in sterile buffered saline against Staphylococcus aureus infections was determined, using a well-established rabbit skin infection model. Thirteen eight-week-old rabbits were vaccinated twice subcutaneously with a two-week interval while ten rabbits were injected twice with sterile buffered saline. Two weeks after the last injection, ten vaccinated and all PBS-injected rabbits were inoculated intradermally with 108 cfu of a S. aureus strain which had been shown to be highly virulent for rabbits. Three vaccinated animals served as negative controls and were intradermally injected with sterile buffered saline. All rabbits were examined daily for the development of skin lesions until fourteen days after the experimental infection when all rabbits were euthanised. All animals experimentally infected with S. aureus developed skin abscesses within 24 hours post-inoculation, but in the vaccinated group the maximum abscess diameter was significantly lower than in the non-vaccinated group (P=0.048). The difference between the autovaccinated and non-vaccinated group increased over time (P<0.001). These results indicate that vaccination with an inactivated whole cell bacterin may be useful for control of staphylococcosis in rabbits but does not prevent abscess formation in animals inoculated with a high dose of a highly virulent S. aureus strain.Meulemans, G.; Haesebrouck, F.; Lipinska, U.; Duchateau, L.; Hermans, K. (2011). Efficacy of an autogenous vaccine against highly virulent "Staphylococcus aureus" infection in rabbits. World Rabbit Science. 19(1):1-9. https://doi.org/10.4995/wrs.2011.8121919

    Local Membrane Deformations Activate Ca2+-Dependent K+ and Anionic Currents in Intact Human Red Blood Cells

    Get PDF
    BACKGROUND: The mechanical, rheological and shape properties of red blood cells are determined by their cortical cytoskeleton, evolutionarily optimized to provide the dynamic deformability required for flow through capillaries much narrower than the cell's diameter. The shear stress induced by such flow, as well as the local membrane deformations generated in certain pathological conditions, such as sickle cell anemia, have been shown to increase membrane permeability, based largely on experimentation with red cell suspensions. We attempted here the first measurements of membrane currents activated by a local and controlled membrane deformation in single red blood cells under on-cell patch clamp to define the nature of the stretch-activated currents. METHODOLOGY/PRINCIPAL FINDINGS: The cell-attached configuration of the patch-clamp technique was used to allow recordings of single channel activity in intact red blood cells. Gigaohm seal formation was obtained with and without membrane deformation. Deformation was induced by the application of a negative pressure pulse of 10 mmHg for less than 5 s. Currents were only detected when the membrane was seen domed under negative pressure within the patch-pipette. K(+) and Cl(-) currents were strictly dependent on the presence of Ca(2+). The Ca(2+)-dependent currents were transient, with typical decay half-times of about 5-10 min, suggesting the spontaneous inactivation of a stretch-activated Ca(2+) permeability (PCa). These results indicate that local membrane deformations can transiently activate a Ca(2+) permeability pathway leading to increased [Ca(2+)](i), secondary activation of Ca(2+)-sensitive K(+) channels (Gardos channel, IK1, KCa3.1), and hyperpolarization-induced anion currents. CONCLUSIONS/SIGNIFICANCE: The stretch-activated transient PCa observed here under local membrane deformation is a likely contributor to the Ca(2+)-mediated effects observed during the normal aging process of red blood cells, and to the increased Ca(2+) content of red cells in certain hereditary anemias such as thalassemia and sickle cell anemia

    Formation of two-dimensional weak localization in conducting Langmuir-Blodgett films

    Full text link
    We report the magnetotransport properties up to 7 T in the organic highly conducting Langmuir-Blodgett(LB) films formed by a molecular association of the electroactive donor molecule bis(ethylendioxy)tetrathiafulvalene (BEDO-TTF) and stearic acid CH3_3(CH2_2)16_{16}COOH. We show the logarithmic decrease of dc conductivity and the negative transverse magnetoresistance at low temperature. They are interpreted in the weak localization of two-dimensional (2D) electronic system based on the homogeneous conducting layer with the molecular size thickness of BEDO-TTF. The electronic length with phase memory is given at the mesoscopic scale, which provides for the first time evidence of the 2D coherent charge transport in the conducting LB films.Comment: 5 pages, 1 Table and 5 figure

    Associations between fears related to safety during sleep and self-reported sleep in men and women living in a low-socioeconomic status setting

    Get PDF
    South Africans living in low socioeconomic areas have self-reported unusually long sleep durations (approximately 9–10 h). One hypothesis is that these long durations may be a compensatory response to poor sleep quality as a result of stressful environments. This study aimed to investigate whether fear of not being safe during sleep is associated with markers of sleep quality or duration in men and women. South Africans (n = 411, 25–50 y, 57% women) of African-origin living in an urban township, characterised by high crime and poverty rates, participated in this study. Participants are part of a larger longitudinal cohort study: Modelling the Epidemiologic Transition Study (METS)–Microbiome. Customised questions were used to assess the presence or absence of fears related to feeling safe during sleep, and the Epworth Sleepiness Scale, Pittsburgh Sleep Quality Index (PSQI) and Insomnia Severity Index were used to assess daytime sleepiness, sleep quality and insomnia symptom severity respectively. Adjusted logistic regression models indicated that participants who reported fears related to safety during sleep were more likely to report poor sleep quality (PSQI &gt; 5) compared to participants not reporting such fears and that this relationship was stronger among men than women. This is one of the first studies outside American or European populations to suggest that poor quality sleep is associated with fear of personal safety in low-SES South African adults

    Reversal of the ΔdegP Phenotypes by a Novel rpoE Allele of Escherichia coli

    Get PDF
    RseA sequesters RpoE (σE) to the inner membrane of Escherichia coli when envelope stress is low. Elevated envelope stress triggers RseA cleavage by the sequential action of two membrane proteases, DegS and RseP, releasing σE to activate an envelope stress reducing pathway. Revertants of a ΔdegP ΔbamB strain, which fails to grow at 37°C due to high envelope stress, harbored mutations in the rseA and rpoE genes. Null and missense rseA mutations constitutively hyper-activated the σE regulon and significantly reduced the major outer membrane protein (OMP) levels. In contrast, a novel rpoE allele, rpoE3, resulting from the partial duplication of the rpoE gene, increased σE levels greater than that seen in the rseA mutant background but did not reduce OMP levels. A σE-dependent RybB::LacZ construct showed only a weak activation of the σE pathway by rpoE3. Despite this, rpoE3 fully reversed the growth and envelope vesiculation phenotypes of ΔdegP. Interestingly, rpoE3 also brought down the modestly activated Cpx envelope stress pathway in the ΔdegP strain to the wild type level, showing the complementary nature of the σE and Cpx pathways. Through employing a labile mutant periplasmic protein, AcrAL222Q, it was determined that the rpoE3 mutation overcomes the ΔdegP phenotypes, in part, by activating a σE-dependent proteolytic pathway. Our data suggest that a reduction in the OMP levels is not intrinsic to the σE-mediated mechanism of lowering envelope stress. They also suggest that under extreme envelope stress, a tight homeostasis loop between RseA and σE may partly be responsible for cell death, and this loop can be broken by mutations that either lower RseA activity or increase σE levels
    corecore