2,055 research outputs found

    A new cosmic shear function: Optimised E-/B-mode decomposition on a finite interval

    Full text link
    The decomposition of the cosmic shear field into E- and B-mode is an important diagnostic in weak gravitational lensing. However, commonly used techniques to perform this separation suffer from mode-mixing on very small or very large scales. We introduce a new E-/B-mode decomposition of the cosmic shear two-point correlation on a finite interval. This new statistic is optimised for cosmological applications, by maximising the signal-to-noise ratio (S/N) and a figure of merit (FoM) based on the Fisher matrix of the cosmological parameters Omega_m and sigma_8. We improve both S/N and FoM results substantially with respect to the recently introduced ring statistic, which also provides E-/B-mode separation on a finite angular range. The S/N (FoM) is larger by a factor of three (two) on angular scales between 1 and 220 arc minutes. In addition, it yields better results than for the aperture-mass dispersion ^2, with improvements of 20% (10%) for S/N (FoM). Our results depend on the survey parameters, most importantly on the covariance of the two-point shear correlation function. Although we assume parameters according to the CFHTLS-Wide survey, our method and optimisation scheme can be applied easily to any given survey settings and observing parameters. Arbitrary quantities, with respect to which the E-/B-mode filter is optimised, can be defined, therefore generalising the aim and context of the new shear statistic.Comment: 11 pages, 7 figures, 2 tables. MNRAS accepted. C-program freely available at http://www2.iap.fr/users/kilbinge/decomp_eb

    An Expression for the Granular Elastic Energy

    Full text link
    Granular Solid Hydrodynamics (GSH) is a broad-ranged continual mechanical description of granular media capable of accounting for static stress distributions, yield phenomena, propagation and damping of elastic waves, the critical state, shear band, and fast dense flow. An important input of GSH is an expression for the elastic energy needed to deform the grains. The original expression, though useful and simple, has some draw-backs. Therefore, a slightly more complicated expression is proposed here that eliminates three of them: (1) The maximal angle at which an inclined layer of grains remains stable is increased from 2626^\circ to the more realistic value of 3030^\circ. (2)Depending on direction and polarization, transverse elastic waves are known to propagate at slightly different velocities. The old expression neglects these differences, the new one successfully reproduces them. (3) Most importantly, the old expression contains only the Drucker-Prager yield surface. The new one contains in addition those named after Coulomb, Lade-Duncan and Matsuoka-Nakai -- realizing each, and interpolating between them, by shifting a single scalar parameter

    Mass-concentration relation of clusters of galaxies from CFHTLenS

    Get PDF
    Based on weak lensing data from the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS), in this paper we study the mass-concentration (MM-cc) relation for 200\sim 200 redMaPPer clusters in the fields. We extract the MM-cc relation by measuring the density profiles of individual clusters instead of using stacked weak lensing signals. By performing Monte Carlo simulations, we demonstrate that although the signal-to-noise ratio for each individual cluster is low, the unbiased MM-cc relation can still be reliably derived from a large sample of clusters by carefully taking into account the impacts of shape noise, cluster center offset, dilution effect from member or foreground galaxies, and the projection effect. Our results show that within error bars the derived MM-cc relation for redMaPPer clusters is in agreement with simulation predictions. There is a weak deviation in that the halo concentrations calibrated by Monte Carlo simulations are somewhat higher than that predicted from Planck{\it Planck} cosmology.Comment: Accepted for Publication in ApJ. 18 pages, 8 figures. Updated to match the published versio

    Using microscopic video data measures for driver behavior analysis during adverse winter weather: opportunities and challenges

    Get PDF
    ABSTRACT: This paper presents a driver behavior analysis using microscopic video data measures including vehicle speed, lane-changing ratio, and time to collision. An analytical framework was developed to evaluate the effect of adverse winter weather conditions on highway driving behavior based on automated (computer) and manual methods. The research was conducted through two case studies. The first case study was conducted to evaluate the feasibility of applying an automated approach to extracting driver behavior data based on 15 video recordings obtained in the winter 2013 at three different locations on the Don Valley Parkway in Toronto, Canada. A comparison was made between the automated approach and manual approach, and issues in collecting data using the automated approach under winter conditions were identified. The second case study was based on high quality data collected in the winter 2014, at a location on Highway 25 in Montreal, Canada. The results demonstrate the effectiveness of the automated analytical framework in analyzing driver behavior, as well as evaluating the impact of adverse winter weather conditions on driver behavior. This approach could be applied to evaluate winter maintenance strategies and crash risk on highways during adverse winter weather conditions

    Galaxy-galaxy weak-lensing measurement from SDSS: II. host halo properties of galaxy groups

    Get PDF
    As the second paper of a series on studying galaxy-galaxy lensing signals using the Sloan Digital Sky Survey Data Release 7 (SDSS DR7), we present our measurement and modelling of the lensing signals around groups of galaxies. We divide the groups into four halo mass bins, and measure the signals around four different halo-center tracers: brightest central galaxy (BCG), luminosity-weighted center, number-weighted center and X-ray peak position. For X-ray and SDSS DR7 cross identified groups, we further split the groups into low and high X-ray emission subsamples, both of which are assigned with two halo-center tracers, BCGs and X-ray peak positions. The galaxy-galaxy lensing signals show that BCGs, among the four candidates, are the best halo-center tracers. We model the lensing signals using a combination of four contributions: off-centered NFW host halo profile, sub-halo contribution, stellar contribution, and projected 2-halo term. We sample the posterior of 5 parameters i.e., halo mass, concentration, off-centering distance, sub halo mass, and fraction of subhalos via a MCMC package using the galaxy-galaxy lensing signals. After taking into account the sampling effects (e.g. Eddington bias), we found the best fit halo masses obtained from lensing signals are quite consistent with those obtained in the group catalog based on an abundance matching method, except in the lowest mass bin. Subject headings: (cosmology:) gravitational lensing, galaxies: clusters: generalComment: 12 pages, 7 figures, submitted to Ap

    Narrowband filters for the FUV range

    Get PDF
    10 págs.; 6 figs.; 4 tabs.We address the design, fabrication, and characterization of transmittance filters for the Ionosphere Photometer instrument (IP), developed by the Center for Space Science and Applied Research (CSSAR). IP, a payload of Feng-Yun 3D meteorological satellite, to be launched on 2016, is aimed to perform photometry measurements of Earth¿s ionosphere by the analysis of the OI (135.6 nm) spectral line and N2 Lyman-Birge-Hopfield (LBH, 140-180 nm) band, both of them in the far ultraviolet (FUV) range. The most convenient procedure to isolate a spectral band is the use of tunable transmittance filters. In many applications the intensity of the ultraviolet, visible and infrared background is higher than the intensity of the target FUV lines; therefore one of the most important requirements for transmittance filters is to reject (by reflecting and/or by absorbing) as efficiently as possible the visible and close ranges. In the FUV range, (Al/MgF2)n transmittance filters are the most common, and they are suitable to reject the visible and adjacent ranges. These materials present unique properties in this range: MgF2 is transparent down to ~115 nm and Al has a very low refractive index in the FUV that contrasts well with MgF2. Narrowband tunable filters with very low transmittance at long wavelengths are achievable. The main data on the preparation and characterization of IP filters by Grupo de Óptica de Láminas Delgadas (GOLD) is detailed. In this proceeding we present (Al/MgF2)3 filters peaked at either 135.6 nm or at the center of the LBH band (~160 nm). Filters were characterized in the 125-800 nm range (143-800 nm range for the LBH filter). After some storage in a desiccator, both coatings kept a transmittance of ~0.14 at their target wavelengths, with visible-topeak transmittance ratios of 1.2·10-4 (OI filter) and 1.3·10-4 (LBH filter). One filter tuned at each target wavelength was exposed to ~300 Gy 60Co gamma dose, with no significant transmittance change. Keywords: Coatings, Far Ultraviolet, Atmosphere Physics, Transmittance Filters, Space OpticsThis research was partly supported by the National Programme for Research, Subdirección General de Proyectos de Investigación, Ministerio de Ciencia e Innovación, project number AYA2010-22032 and AYA2013- 42590-P. The authors are gratefully acknowledged to Pedro Valdivieso (Instalación de irradiación Náyade, CIEMAT).Peer Reviewe
    corecore